一种改进群搜索优化与Otsu混合方法的彩色图像分割

L. Pacífico, Teresa B Ludermir, Larissa F. S. Britto
{"title":"一种改进群搜索优化与Otsu混合方法的彩色图像分割","authors":"L. Pacífico, Teresa B Ludermir, Larissa F. S. Britto","doi":"10.1109/BRACIS.2018.00058","DOIUrl":null,"url":null,"abstract":"Image segmentation is a fundamental process for image analysis and computer vision. One of the most popular image segmentation methods is Otsu algorithm, originally proposed to segment a grayscale image in two classes, but extended to multi-level thresholding afterwards. Although effective, the computational cost for multi-level Otsu limits its application in real world problems, and, recently, many evolutionary algorithms (EAs) have been applied to optimize Otsu algorithm. In this paper, a hybrid Otsu and improved Group Search Optimization (GSO) algorithm is presented to deal with multi-level color image thresholding problem, named IGSO. IGSO implements a weedout operator to prune the worst members from GSO population. We also evaluate the influence of two treatments to deal with outbounded individuals from EAs population. The proposed IGSO is compared to other EAs from literature through twelve real color image problems, showing its potential and robustness even when compared to original GSO algorithm.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Hybrid Improved Group Search Optimization and Otsu Method for Color Image Segmentation\",\"authors\":\"L. Pacífico, Teresa B Ludermir, Larissa F. S. Britto\",\"doi\":\"10.1109/BRACIS.2018.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is a fundamental process for image analysis and computer vision. One of the most popular image segmentation methods is Otsu algorithm, originally proposed to segment a grayscale image in two classes, but extended to multi-level thresholding afterwards. Although effective, the computational cost for multi-level Otsu limits its application in real world problems, and, recently, many evolutionary algorithms (EAs) have been applied to optimize Otsu algorithm. In this paper, a hybrid Otsu and improved Group Search Optimization (GSO) algorithm is presented to deal with multi-level color image thresholding problem, named IGSO. IGSO implements a weedout operator to prune the worst members from GSO population. We also evaluate the influence of two treatments to deal with outbounded individuals from EAs population. The proposed IGSO is compared to other EAs from literature through twelve real color image problems, showing its potential and robustness even when compared to original GSO algorithm.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图像分割是图像分析和计算机视觉的一个基本过程。最流行的图像分割方法之一是Otsu算法,最初提出将灰度图像分割为两类,后来扩展到多级阈值分割。虽然多层Otsu算法是有效的,但其计算成本限制了其在实际问题中的应用,近年来,许多进化算法被用于优化Otsu算法。本文提出了一种混合大津算法和改进的群搜索优化算法(GSO),用于处理多级彩色图像阈值分割问题。IGSO实现了一种剔除算子,从GSO种群中剔除最差的成员。我们还评估了两种处理方法对ea种群中越界个体的影响。通过12个真实彩色图像问题,将本文提出的IGSO算法与文献中的其他ea算法进行了比较,即使与原始GSO算法相比,也显示了它的潜力和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Improved Group Search Optimization and Otsu Method for Color Image Segmentation
Image segmentation is a fundamental process for image analysis and computer vision. One of the most popular image segmentation methods is Otsu algorithm, originally proposed to segment a grayscale image in two classes, but extended to multi-level thresholding afterwards. Although effective, the computational cost for multi-level Otsu limits its application in real world problems, and, recently, many evolutionary algorithms (EAs) have been applied to optimize Otsu algorithm. In this paper, a hybrid Otsu and improved Group Search Optimization (GSO) algorithm is presented to deal with multi-level color image thresholding problem, named IGSO. IGSO implements a weedout operator to prune the worst members from GSO population. We also evaluate the influence of two treatments to deal with outbounded individuals from EAs population. The proposed IGSO is compared to other EAs from literature through twelve real color image problems, showing its potential and robustness even when compared to original GSO algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1