基于多视图学习和链接预测的病毒-受体相互作用预测

Ling-ling Zhu, Kai Zheng, Guihua Duan, Jianxin Wang
{"title":"基于多视图学习和链接预测的病毒-受体相互作用预测","authors":"Ling-ling Zhu, Kai Zheng, Guihua Duan, Jianxin Wang","doi":"10.1109/BIBM55620.2022.9995553","DOIUrl":null,"url":null,"abstract":"Receptor-binding is the first step of viral infection. Discovering potential virus-receptor interactions may give insight into potential strategies for treating viral infectious diseases. Most of computational methods for the virus-receptor interaction prediction are mainly based on sequence information. They neither makes effective use of structure information nor effectively handles with missing values of multiple similarities. In addition, the Link Prediction via linear optimization (LP) only uses contribution of neighbors of a node and ignores contribution of neighbors of another node on the network link. In this article, we present a virus-receptor interaction prediction method (MVLP) based on Multi-View learning and LP via contributions of all neighbors of two nodes on the network link. First, missing values of the receptor secondary structure similarity, the receptor conserved domain secondary structure similarity, the viral protein secondary structure similarity, the viral protein sequence similarity and the viral genome sequence similarity are updated by the gaussian radial basis function (GRB). To improve these similarities, we fuse updated and initial values of each similarity with multi-view learning, respectively. Next, three virus values and receptor similarities are integrated into the comprehensive virus and receptor similarity by the averaging method, respectively. Finally, LP based on contribution of neighbors of two nodes is presented for the virus-receptor interaction prediction. To evaluate the ability of MVLP, we compare MVLP with four related methods in 10 fold Cross-Validation (10CV). Computational results indicate that an average Area Under Curve (AUC) values of MVLP on viralReceptor sup and viralReceptor are 0.9427 and 0.9444, respectively, which are superior to other related methods. Furthermore, a case study also demonstrates the ability of MVLP in practice.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of virus-receptor interactions based on multi-view learning and link prediction\",\"authors\":\"Ling-ling Zhu, Kai Zheng, Guihua Duan, Jianxin Wang\",\"doi\":\"10.1109/BIBM55620.2022.9995553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Receptor-binding is the first step of viral infection. Discovering potential virus-receptor interactions may give insight into potential strategies for treating viral infectious diseases. Most of computational methods for the virus-receptor interaction prediction are mainly based on sequence information. They neither makes effective use of structure information nor effectively handles with missing values of multiple similarities. In addition, the Link Prediction via linear optimization (LP) only uses contribution of neighbors of a node and ignores contribution of neighbors of another node on the network link. In this article, we present a virus-receptor interaction prediction method (MVLP) based on Multi-View learning and LP via contributions of all neighbors of two nodes on the network link. First, missing values of the receptor secondary structure similarity, the receptor conserved domain secondary structure similarity, the viral protein secondary structure similarity, the viral protein sequence similarity and the viral genome sequence similarity are updated by the gaussian radial basis function (GRB). To improve these similarities, we fuse updated and initial values of each similarity with multi-view learning, respectively. Next, three virus values and receptor similarities are integrated into the comprehensive virus and receptor similarity by the averaging method, respectively. Finally, LP based on contribution of neighbors of two nodes is presented for the virus-receptor interaction prediction. To evaluate the ability of MVLP, we compare MVLP with four related methods in 10 fold Cross-Validation (10CV). Computational results indicate that an average Area Under Curve (AUC) values of MVLP on viralReceptor sup and viralReceptor are 0.9427 and 0.9444, respectively, which are superior to other related methods. Furthermore, a case study also demonstrates the ability of MVLP in practice.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受体结合是病毒感染的第一步。发现潜在的病毒-受体相互作用可能会为治疗病毒性传染病的潜在策略提供见解。大多数病毒-受体相互作用预测的计算方法主要基于序列信息。它们既没有有效地利用结构信息,也没有有效地处理多重相似度缺失值。此外,线性优化的链路预测(Link Prediction via linear optimization, LP)只利用一个节点的邻居的贡献,而忽略了网络链路上另一个节点的邻居的贡献。本文提出了一种基于多视图学习和LP的病毒-受体相互作用预测方法(MVLP),该方法利用网络链路上两个节点的所有邻居的贡献。首先,利用高斯径向基函数(GRB)对缺失的受体二级结构相似度、受体保守域二级结构相似度、病毒蛋白二级结构相似度、病毒蛋白序列相似度和病毒基因组序列相似度进行更新。为了提高这些相似度,我们将每个相似度的更新值和初始值分别融合到多视图学习中。接下来,将三个病毒值和受体相似度分别用平均法整合到综合病毒和受体相似度中。最后,提出了基于两个节点邻居贡献的LP预测病毒与受体相互作用。为了评估MVLP的能力,我们在10倍交叉验证(10CV)中将MVLP与四种相关方法进行了比较。计算结果表明,MVLP在病毒受体sup和病毒受体上的平均AUC值分别为0.9427和0.9444,优于其他相关方法。最后,通过实例验证了该方法在实际应用中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of virus-receptor interactions based on multi-view learning and link prediction
Receptor-binding is the first step of viral infection. Discovering potential virus-receptor interactions may give insight into potential strategies for treating viral infectious diseases. Most of computational methods for the virus-receptor interaction prediction are mainly based on sequence information. They neither makes effective use of structure information nor effectively handles with missing values of multiple similarities. In addition, the Link Prediction via linear optimization (LP) only uses contribution of neighbors of a node and ignores contribution of neighbors of another node on the network link. In this article, we present a virus-receptor interaction prediction method (MVLP) based on Multi-View learning and LP via contributions of all neighbors of two nodes on the network link. First, missing values of the receptor secondary structure similarity, the receptor conserved domain secondary structure similarity, the viral protein secondary structure similarity, the viral protein sequence similarity and the viral genome sequence similarity are updated by the gaussian radial basis function (GRB). To improve these similarities, we fuse updated and initial values of each similarity with multi-view learning, respectively. Next, three virus values and receptor similarities are integrated into the comprehensive virus and receptor similarity by the averaging method, respectively. Finally, LP based on contribution of neighbors of two nodes is presented for the virus-receptor interaction prediction. To evaluate the ability of MVLP, we compare MVLP with four related methods in 10 fold Cross-Validation (10CV). Computational results indicate that an average Area Under Curve (AUC) values of MVLP on viralReceptor sup and viralReceptor are 0.9427 and 0.9444, respectively, which are superior to other related methods. Furthermore, a case study also demonstrates the ability of MVLP in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for associating structural variants with cell-specific transcription factors and histone modifications in defect phenotypes Secure Password Using EEG-based BrainPrint System: Unlock Smartphone Password Using Brain-Computer Interface Technology On functional annotation with gene co-expression networks ST-ChIP: Accurate prediction of spatiotemporal ChIP-seq data with recurrent neural networks Discovering the Knowledge in Unstructured Early Drug Development Data Using NLP and Advanced Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1