提示协议:使用广播方法为密集物联网设备实现无id数据传输

Yi Ren, Ren-Jie Wu, Y. Tseng
{"title":"提示协议:使用广播方法为密集物联网设备实现无id数据传输","authors":"Yi Ren, Ren-Jie Wu, Y. Tseng","doi":"10.1109/PERCOMW.2017.7917609","DOIUrl":null,"url":null,"abstract":"IoT (Internet of Things) has attracted a lot of attention recently. IoT devices need to report their data or status to base stations at various frequencies. The IoT communications observed by a base station normally exhibit the following characteristics: (1) massively connected, (2) lightly loaded per packet, and (3) periodical or at least mostly predictable. The current design principals of communication networks, when applied to IoT scenarios, however, do not fit well to these requirements. For example, an IPv6 address is 128 bits, which is much longer than a 16-bit temperature report. Also, contending to send a small packet is not cost-effective. In this work, we propose a novel framework, which is slot-based, schedule-oriented, and identity-free for uploading IoT devices' data. We show that it fits very well for IoT applications. We propose two schemes, from an ideal one to a more practical one. The main idea is to bundle time slots with certain hashing functions of device IDs, thus significantly reducing transmission overheads, including device IDs and contention overheads.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The hint protocol: Using a broadcast method to enable ID-free data transmission for dense IoT devices\",\"authors\":\"Yi Ren, Ren-Jie Wu, Y. Tseng\",\"doi\":\"10.1109/PERCOMW.2017.7917609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IoT (Internet of Things) has attracted a lot of attention recently. IoT devices need to report their data or status to base stations at various frequencies. The IoT communications observed by a base station normally exhibit the following characteristics: (1) massively connected, (2) lightly loaded per packet, and (3) periodical or at least mostly predictable. The current design principals of communication networks, when applied to IoT scenarios, however, do not fit well to these requirements. For example, an IPv6 address is 128 bits, which is much longer than a 16-bit temperature report. Also, contending to send a small packet is not cost-effective. In this work, we propose a novel framework, which is slot-based, schedule-oriented, and identity-free for uploading IoT devices' data. We show that it fits very well for IoT applications. We propose two schemes, from an ideal one to a more practical one. The main idea is to bundle time slots with certain hashing functions of device IDs, thus significantly reducing transmission overheads, including device IDs and contention overheads.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

物联网(Internet of Things)最近引起了人们的广泛关注。物联网设备需要以不同的频率向基站报告其数据或状态。基站观察到的物联网通信通常具有以下特征:(1)大规模连接,(2)每个数据包的负载较轻,以及(3)周期性或至少大部分可预测。然而,当应用于物联网场景时,当前通信网络的设计原则并不能很好地满足这些要求。例如,IPv6地址是128位,比16位的温度报告长得多。此外,争着发送一个小数据包是不划算的。在这项工作中,我们提出了一个新的框架,该框架基于插槽,面向时间表,并且无需身份来上传物联网设备的数据。我们证明它非常适合物联网应用。我们提出了两种方案,从理想方案到比较实际的方案。其主要思想是将时隙与设备id的某些散列函数捆绑在一起,从而显著降低传输开销,包括设备id和争用开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The hint protocol: Using a broadcast method to enable ID-free data transmission for dense IoT devices
IoT (Internet of Things) has attracted a lot of attention recently. IoT devices need to report their data or status to base stations at various frequencies. The IoT communications observed by a base station normally exhibit the following characteristics: (1) massively connected, (2) lightly loaded per packet, and (3) periodical or at least mostly predictable. The current design principals of communication networks, when applied to IoT scenarios, however, do not fit well to these requirements. For example, an IPv6 address is 128 bits, which is much longer than a 16-bit temperature report. Also, contending to send a small packet is not cost-effective. In this work, we propose a novel framework, which is slot-based, schedule-oriented, and identity-free for uploading IoT devices' data. We show that it fits very well for IoT applications. We propose two schemes, from an ideal one to a more practical one. The main idea is to bundle time slots with certain hashing functions of device IDs, thus significantly reducing transmission overheads, including device IDs and contention overheads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1