基于cnn的DeepFake视频检测中的训练策略和数据增强

L. Bondi, E. D. Cannas, Paolo Bestagini, S. Tubaro
{"title":"基于cnn的DeepFake视频检测中的训练策略和数据增强","authors":"L. Bondi, E. D. Cannas, Paolo Bestagini, S. Tubaro","doi":"10.1109/WIFS49906.2020.9360901","DOIUrl":null,"url":null,"abstract":"The fast and continuous growth in number and quality of deepfake videos calls for the development of reliable de-tection systems capable of automatically warning users on social media and on the Internet about the potential untruthfulness of such contents. While algorithms, software, and smartphone apps are getting better every day in generating manipulated videos and swapping faces, the accuracy of automated systems for face forgery detection in videos is still quite limited and generally biased toward the dataset used to design and train a specific detection system. In this paper we analyze how different training strategies and data augmentation techniques affect CNN-based deepfake detectors when training and testing on the same dataset or across different datasets.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Training Strategies and Data Augmentations in CNN-based DeepFake Video Detection\",\"authors\":\"L. Bondi, E. D. Cannas, Paolo Bestagini, S. Tubaro\",\"doi\":\"10.1109/WIFS49906.2020.9360901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fast and continuous growth in number and quality of deepfake videos calls for the development of reliable de-tection systems capable of automatically warning users on social media and on the Internet about the potential untruthfulness of such contents. While algorithms, software, and smartphone apps are getting better every day in generating manipulated videos and swapping faces, the accuracy of automated systems for face forgery detection in videos is still quite limited and generally biased toward the dataset used to design and train a specific detection system. In this paper we analyze how different training strategies and data augmentation techniques affect CNN-based deepfake detectors when training and testing on the same dataset or across different datasets.\",\"PeriodicalId\":354881,\"journal\":{\"name\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS49906.2020.9360901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

深度假视频数量和质量的快速持续增长,要求开发可靠的检测系统,能够在社交媒体和互联网上自动警告用户此类内容的潜在不真实性。虽然算法、软件和智能手机应用程序在生成操纵视频和交换人脸方面每天都在变得越来越好,但用于视频中人脸伪造检测的自动化系统的准确性仍然非常有限,并且通常偏向于用于设计和训练特定检测系统的数据集。在本文中,我们分析了不同的训练策略和数据增强技术在同一数据集或不同数据集上训练和测试时如何影响基于cnn的深度假检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training Strategies and Data Augmentations in CNN-based DeepFake Video Detection
The fast and continuous growth in number and quality of deepfake videos calls for the development of reliable de-tection systems capable of automatically warning users on social media and on the Internet about the potential untruthfulness of such contents. While algorithms, software, and smartphone apps are getting better every day in generating manipulated videos and swapping faces, the accuracy of automated systems for face forgery detection in videos is still quite limited and generally biased toward the dataset used to design and train a specific detection system. In this paper we analyze how different training strategies and data augmentation techniques affect CNN-based deepfake detectors when training and testing on the same dataset or across different datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Post-Quantum Secure Two-Party Computation for Iris Biometric Template Protection AmpleDroid Recovering Large Object Files from Android Application Memory The Suitability of RSA for Bulk Data Encryption ALASKA#2: Challenging Academic Research on Steganalysis with Realistic Images Landmark Breaker: Obstructing DeepFake By Disturbing Landmark Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1