基于Krasovskii-Lur 'e泛函的时延递归神经网络轨迹跟踪误差主从同步

Joel Perez Padron, Jose Paz Perez Padron, Angel Flores Hernandez, Santiago Arroyo
{"title":"基于Krasovskii-Lur 'e泛函的时延递归神经网络轨迹跟踪误差主从同步","authors":"Joel Perez Padron, Jose Paz Perez Padron, Angel Flores Hernandez, Santiago Arroyo","doi":"10.1109/ICMEAE.2016.017","DOIUrl":null,"url":null,"abstract":"This paper presents an application of a time-delay neural networks to chaos synchronization. The two main methodologies, on which the approach is based, are time-delay recurrent neural networks and inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the Lyapunov-Krasovskii and Lur'e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a time-delay dynamical network and the Chua's circuits.","PeriodicalId":273081,"journal":{"name":"2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Master-Slave Synchronization for Trajectory Tracking Error Using Time-Delay Recurrent Neural Networks via Krasovskii-Lur’e Functional for Chua’s Circuit\",\"authors\":\"Joel Perez Padron, Jose Paz Perez Padron, Angel Flores Hernandez, Santiago Arroyo\",\"doi\":\"10.1109/ICMEAE.2016.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an application of a time-delay neural networks to chaos synchronization. The two main methodologies, on which the approach is based, are time-delay recurrent neural networks and inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the Lyapunov-Krasovskii and Lur'e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a time-delay dynamical network and the Chua's circuits.\",\"PeriodicalId\":273081,\"journal\":{\"name\":\"2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE.2016.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2016.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了时滞神经网络在混沌同步中的应用。该方法所基于的两种主要方法是时滞递归神经网络和非线性系统的逆最优控制。研究了基于Lyapunov-Krasovskii和Lur'e理论的轨迹跟踪问题,得到了延迟递归神经网络与参考函数之间跟踪误差的全局渐近稳定性。分析结果给出了时滞动态网络和蔡氏电路的轨迹跟踪仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Master-Slave Synchronization for Trajectory Tracking Error Using Time-Delay Recurrent Neural Networks via Krasovskii-Lur’e Functional for Chua’s Circuit
This paper presents an application of a time-delay neural networks to chaos synchronization. The two main methodologies, on which the approach is based, are time-delay recurrent neural networks and inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the Lyapunov-Krasovskii and Lur'e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a time-delay dynamical network and the Chua's circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology Based on Design of Experiments to Assess Quality of Estimated Disturbances by State Observers in Mechanical Systems Quadcopter Smooth-Saturated Robust Backstepping Control Multirotor UAV Coverage Planning under Wind Conditions Support Vector Machines Applied to 2-D Binary Image Euler Number Computation Searching for Cerebrovascular Disease Optimal Treatment Recommendations Applying Markovian Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1