超临界压力下烃类燃料热解与热解结焦流动与传热耦合过程分析

Chaofan Zhao, Xizhuo Hu, Jianqin Zhu, Z. Tao
{"title":"超临界压力下烃类燃料热解与热解结焦流动与传热耦合过程分析","authors":"Chaofan Zhao, Xizhuo Hu, Jianqin Zhu, Z. Tao","doi":"10.1115/GT2018-75591","DOIUrl":null,"url":null,"abstract":"The regenerative cooling technology has become the most effective method to reduce the high-temperature of the scramjet engine. With physical and chemical heat sink, the endothermic hydrocarbon fuel has excellent performance in the regenerative cooling system of the scramjet engine which operates under extremely high temperature. The pyrolytic reactions not only absorb a large amount of heat, but also produce some kinds of coking precursors, mainly alkenes and aromatics. Because of the coking precursors and the coking reactions, a lot of coke would be generated on the wall and exert strong impact on the heat transfer, as the conductivity of the coke is much lower than that of the metal wall. Meanwhile, the surface coking changes the geometric parameters of the cooling tube, which leads to the flow field variations with the thickening coking layer. So, it is needed to find out the interaction between these variations. In this paper, a one-dimensional (1D) model has been developed to calculate the flow and heat transfer parameters distributions of the pyrolytically reacted RP-3 along the regenerative cooling tube with the pyrolytic coking. The 24-step pyrolytic reaction model and the coking kinetic model are applied to predict the pyrolysis and pyrolytic coking process of RP-3, with accurate computations of the physical properties of fluid mixture which undergo drastic variations during the transcritical process. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. Calculations on the coupling relationships between the flow, heat transfer, pyrolysis and pyrolytic coking within 20 min in the circular tube have been conducted. With the heat flux increased, the coke mass is rising sharply and the temperature of the outer tube wall rises rapidly owing to the increasing thermal resistance of the coke layer. Moreover, the flow velocity becomes faster during the narrowing process of the tube caused by surface coking. In order to better understand the coking characteristics, further investigations on distributions of the surface coking under heat fluxes of 1.2–2.0MW/m2, pressures of 2.6–7.4 MPa and with inlet velocities of 0–5m/s have been performed. Results reveal that all these factors play an important role in the pyrolytic reactions and the coking rate distributions. The results in this paper have significant reference value in the design of the regenerative cooling system.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coupling Process Analysis on the Flow and Heat Transfer of Hydrocarbon Fuel With Pyrolysis and Pyrolytic Coking Under Supercritical Pressures\",\"authors\":\"Chaofan Zhao, Xizhuo Hu, Jianqin Zhu, Z. Tao\",\"doi\":\"10.1115/GT2018-75591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regenerative cooling technology has become the most effective method to reduce the high-temperature of the scramjet engine. With physical and chemical heat sink, the endothermic hydrocarbon fuel has excellent performance in the regenerative cooling system of the scramjet engine which operates under extremely high temperature. The pyrolytic reactions not only absorb a large amount of heat, but also produce some kinds of coking precursors, mainly alkenes and aromatics. Because of the coking precursors and the coking reactions, a lot of coke would be generated on the wall and exert strong impact on the heat transfer, as the conductivity of the coke is much lower than that of the metal wall. Meanwhile, the surface coking changes the geometric parameters of the cooling tube, which leads to the flow field variations with the thickening coking layer. So, it is needed to find out the interaction between these variations. In this paper, a one-dimensional (1D) model has been developed to calculate the flow and heat transfer parameters distributions of the pyrolytically reacted RP-3 along the regenerative cooling tube with the pyrolytic coking. The 24-step pyrolytic reaction model and the coking kinetic model are applied to predict the pyrolysis and pyrolytic coking process of RP-3, with accurate computations of the physical properties of fluid mixture which undergo drastic variations during the transcritical process. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. Calculations on the coupling relationships between the flow, heat transfer, pyrolysis and pyrolytic coking within 20 min in the circular tube have been conducted. With the heat flux increased, the coke mass is rising sharply and the temperature of the outer tube wall rises rapidly owing to the increasing thermal resistance of the coke layer. Moreover, the flow velocity becomes faster during the narrowing process of the tube caused by surface coking. In order to better understand the coking characteristics, further investigations on distributions of the surface coking under heat fluxes of 1.2–2.0MW/m2, pressures of 2.6–7.4 MPa and with inlet velocities of 0–5m/s have been performed. Results reveal that all these factors play an important role in the pyrolytic reactions and the coking rate distributions. The results in this paper have significant reference value in the design of the regenerative cooling system.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-75591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-75591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

蓄热冷却技术已成为降低超燃冲压发动机高温的最有效方法。烃类吸热燃料具有物理和化学吸热特性,在超高温冲压发动机的蓄热冷却系统中具有优异的性能。热解反应不仅吸收大量的热量,而且产生多种焦化前体,主要是烯烃和芳烃。由于焦化前体和焦化反应的存在,由于焦炭的导电性远低于金属壁,因此会在壁上产生大量的焦炭,对传热产生强烈的影响。同时,表面焦化改变了冷却管的几何参数,导致流场随焦化层的加厚而变化。因此,需要找出这些变化之间的相互作用。本文建立了一个一维模型,计算了RP-3热解反应后沿蓄热式冷却管的流动和传热参数分布。采用24步热解反应模型和焦化动力学模型对RP-3的热解和焦化过程进行了预测,准确计算了在跨临界过程中发生剧烈变化的流体混合物的物理性质。将目前的预测结果与公开发表的实验数据进行了比较,得到了很好的一致性。计算了圆管内20 min内流动、传热、热解和热解结焦之间的耦合关系。随着热流密度的增大,焦炭质量急剧上升,由于焦炭层热阻增大,外管壁温度迅速升高。此外,由于表面焦化引起的管腔变窄过程中,流速变快。为了更好地了解焦化特性,进一步研究了热流为1.2 ~ 2.0 mw /m2、压力为2.6 ~ 7.4 MPa、进口速度为0 ~ 5m/s时表面焦化的分布。结果表明,这些因素对热解反应和结焦速率分布都有重要影响。本文的研究结果对蓄热式冷却系统的设计具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coupling Process Analysis on the Flow and Heat Transfer of Hydrocarbon Fuel With Pyrolysis and Pyrolytic Coking Under Supercritical Pressures
The regenerative cooling technology has become the most effective method to reduce the high-temperature of the scramjet engine. With physical and chemical heat sink, the endothermic hydrocarbon fuel has excellent performance in the regenerative cooling system of the scramjet engine which operates under extremely high temperature. The pyrolytic reactions not only absorb a large amount of heat, but also produce some kinds of coking precursors, mainly alkenes and aromatics. Because of the coking precursors and the coking reactions, a lot of coke would be generated on the wall and exert strong impact on the heat transfer, as the conductivity of the coke is much lower than that of the metal wall. Meanwhile, the surface coking changes the geometric parameters of the cooling tube, which leads to the flow field variations with the thickening coking layer. So, it is needed to find out the interaction between these variations. In this paper, a one-dimensional (1D) model has been developed to calculate the flow and heat transfer parameters distributions of the pyrolytically reacted RP-3 along the regenerative cooling tube with the pyrolytic coking. The 24-step pyrolytic reaction model and the coking kinetic model are applied to predict the pyrolysis and pyrolytic coking process of RP-3, with accurate computations of the physical properties of fluid mixture which undergo drastic variations during the transcritical process. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. Calculations on the coupling relationships between the flow, heat transfer, pyrolysis and pyrolytic coking within 20 min in the circular tube have been conducted. With the heat flux increased, the coke mass is rising sharply and the temperature of the outer tube wall rises rapidly owing to the increasing thermal resistance of the coke layer. Moreover, the flow velocity becomes faster during the narrowing process of the tube caused by surface coking. In order to better understand the coking characteristics, further investigations on distributions of the surface coking under heat fluxes of 1.2–2.0MW/m2, pressures of 2.6–7.4 MPa and with inlet velocities of 0–5m/s have been performed. Results reveal that all these factors play an important role in the pyrolytic reactions and the coking rate distributions. The results in this paper have significant reference value in the design of the regenerative cooling system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on Film Cooling Performance of the Compound Hole and Y-Shaped Hole Configurations With the Cross-Flow Coolant Channel Aerodynamic and Heat Transfer Experimental Investigation of Platform Cooling on a HP Nozzle Vane Cascade Studies on Cooling Performance of Round Cooling Holes With Various Configurations on a High-Pressure Turbine Vane A Review of Impingement Jet Cooling in Combustor Liner Active Turbulence Generation for Film Cooling Investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1