{"title":"基于动态补偿器的广义线性系统的容错H∞控制","authors":"Yantao Wang, Chong Tan, Xian Zhang","doi":"10.1109/CCDC.2009.5191856","DOIUrl":null,"url":null,"abstract":"Fault-tolerant H∞ control against actuator failures and/or sensor failures for a class of descriptor linear systems via dynamical compensators is investigated. Based on H∞ theory in descriptor linear systems, sufficient conditions for the existence of dynamical compensators with parameters are derived. The dynamical compensator guarantees that the resulting closed-loop descriptor system is admissible and maintains a certain H∞ norm performance in the normal condition as well as in the event of actuator failures or/and sensor failures. Moreover, the closed-loop system performance can be optimized by choosing free parameters in designed dynamical compensators. A numerical example shows the effectiveness of the proposed method.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault-tolerant H∞ control for descriptor linear systems via dynamical compensators\",\"authors\":\"Yantao Wang, Chong Tan, Xian Zhang\",\"doi\":\"10.1109/CCDC.2009.5191856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault-tolerant H∞ control against actuator failures and/or sensor failures for a class of descriptor linear systems via dynamical compensators is investigated. Based on H∞ theory in descriptor linear systems, sufficient conditions for the existence of dynamical compensators with parameters are derived. The dynamical compensator guarantees that the resulting closed-loop descriptor system is admissible and maintains a certain H∞ norm performance in the normal condition as well as in the event of actuator failures or/and sensor failures. Moreover, the closed-loop system performance can be optimized by choosing free parameters in designed dynamical compensators. A numerical example shows the effectiveness of the proposed method.\",\"PeriodicalId\":127110,\"journal\":{\"name\":\"2009 Chinese Control and Decision Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2009.5191856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5191856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault-tolerant H∞ control for descriptor linear systems via dynamical compensators
Fault-tolerant H∞ control against actuator failures and/or sensor failures for a class of descriptor linear systems via dynamical compensators is investigated. Based on H∞ theory in descriptor linear systems, sufficient conditions for the existence of dynamical compensators with parameters are derived. The dynamical compensator guarantees that the resulting closed-loop descriptor system is admissible and maintains a certain H∞ norm performance in the normal condition as well as in the event of actuator failures or/and sensor failures. Moreover, the closed-loop system performance can be optimized by choosing free parameters in designed dynamical compensators. A numerical example shows the effectiveness of the proposed method.