利用集合卡尔曼滤波对地表温度和蒸散发进行同化

Yang Wang, Yaonan Zhang, Guohui Zhao
{"title":"利用集合卡尔曼滤波对地表温度和蒸散发进行同化","authors":"Yang Wang, Yaonan Zhang, Guohui Zhao","doi":"10.4108/ADIM.2010.4","DOIUrl":null,"url":null,"abstract":"Ensemble Kalman filter (EnKF) is an efficient algorithm in dealing with nonlinear and discontinuous data assimilation problems. We designed a scheme that integrated the EnKF and Simplified Simple Biosphere model (SSiB) to improve the estimate of land surface temperature and evapotranspiration (ET) using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) products. This scheme can make a judgment whether there are MODSI LST products available to assimilate at every time step. Then we compared the assimilation results with SSiB open loop simulation and station observations. The results showed that the EnKF algorithm could improve the land surface temperature and evapotranspiration estimate. Then we discussed five challenges during the experiment. In a word, this scheme provides a practical way for improving land surface models estimates with assimilating remote sensing observations.","PeriodicalId":422191,"journal":{"name":"2010 5th International ICST Conference on Communications and Networking in China","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using ensemble Kalman filter to assimilate land surface temperature and evapotranspiration\",\"authors\":\"Yang Wang, Yaonan Zhang, Guohui Zhao\",\"doi\":\"10.4108/ADIM.2010.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble Kalman filter (EnKF) is an efficient algorithm in dealing with nonlinear and discontinuous data assimilation problems. We designed a scheme that integrated the EnKF and Simplified Simple Biosphere model (SSiB) to improve the estimate of land surface temperature and evapotranspiration (ET) using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) products. This scheme can make a judgment whether there are MODSI LST products available to assimilate at every time step. Then we compared the assimilation results with SSiB open loop simulation and station observations. The results showed that the EnKF algorithm could improve the land surface temperature and evapotranspiration estimate. Then we discussed five challenges during the experiment. In a word, this scheme provides a practical way for improving land surface models estimates with assimilating remote sensing observations.\",\"PeriodicalId\":422191,\"journal\":{\"name\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ADIM.2010.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International ICST Conference on Communications and Networking in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ADIM.2010.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

集成卡尔曼滤波(EnKF)是处理非线性和不连续数据同化问题的一种有效算法。设计了一种整合EnKF和简化简单生物圈模型(SSiB)的方案,以改进中分辨率成像光谱辐射计(MODIS)地表温度(LST)产品对地表温度和蒸散发(ET)的估算。该方案可以在每个时间步长判断是否有MODSI LST产品可供同化。然后将同化结果与SSiB开环模拟和台站观测进行了比较。结果表明,EnKF算法可以改善地表温度和蒸散发的估算。然后我们讨论了实验过程中的五个挑战。总之,该方案为利用遥感观测资料改进陆面模式估算提供了一条实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using ensemble Kalman filter to assimilate land surface temperature and evapotranspiration
Ensemble Kalman filter (EnKF) is an efficient algorithm in dealing with nonlinear and discontinuous data assimilation problems. We designed a scheme that integrated the EnKF and Simplified Simple Biosphere model (SSiB) to improve the estimate of land surface temperature and evapotranspiration (ET) using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) products. This scheme can make a judgment whether there are MODSI LST products available to assimilate at every time step. Then we compared the assimilation results with SSiB open loop simulation and station observations. The results showed that the EnKF algorithm could improve the land surface temperature and evapotranspiration estimate. Then we discussed five challenges during the experiment. In a word, this scheme provides a practical way for improving land surface models estimates with assimilating remote sensing observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Adaptive QoS mechanism for multimedia applications over next generation vehicular network Improving performance of MPEG-based stream by SCTP multi-streaming mechanism A mobicast routing protocol with carry-and-forward in vehicular ad-hoc networks Application of cyclostationarity to joint signal detection, classification, and blind parameter estimation The capacity region of a product Gaussian broadcast channel with degraded message sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1