{"title":"SIMDizing pairwise sum:一种平衡精度和吞吐量的求和算法","authors":"Barnaby Dalton, Amy Wang, Bob Blainey","doi":"10.1145/2568058.2568070","DOIUrl":null,"url":null,"abstract":"Implementing summation when accuracy and throughput need to be balanced is a challenging endevour. We present experimental results that provide a sense when to start worrying and the expense of the various solutions that exist. We also present a new algorithm based on pairwise summation that achieves 89% of the throughput of the fastest summation algorithms when the data is not resident in L1 cache while eclipsing the accuracy of signifigantly slower compensated sums like Kahan summation and Kahan-Babuska that are typically used when accuracy is important.","PeriodicalId":411100,"journal":{"name":"WPMVP '14","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SIMDizing pairwise sums: a summation algorithm balancing accuracy with throughput\",\"authors\":\"Barnaby Dalton, Amy Wang, Bob Blainey\",\"doi\":\"10.1145/2568058.2568070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing summation when accuracy and throughput need to be balanced is a challenging endevour. We present experimental results that provide a sense when to start worrying and the expense of the various solutions that exist. We also present a new algorithm based on pairwise summation that achieves 89% of the throughput of the fastest summation algorithms when the data is not resident in L1 cache while eclipsing the accuracy of signifigantly slower compensated sums like Kahan summation and Kahan-Babuska that are typically used when accuracy is important.\",\"PeriodicalId\":411100,\"journal\":{\"name\":\"WPMVP '14\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WPMVP '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2568058.2568070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WPMVP '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568058.2568070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SIMDizing pairwise sums: a summation algorithm balancing accuracy with throughput
Implementing summation when accuracy and throughput need to be balanced is a challenging endevour. We present experimental results that provide a sense when to start worrying and the expense of the various solutions that exist. We also present a new algorithm based on pairwise summation that achieves 89% of the throughput of the fastest summation algorithms when the data is not resident in L1 cache while eclipsing the accuracy of signifigantly slower compensated sums like Kahan summation and Kahan-Babuska that are typically used when accuracy is important.