三维闪存层RBER变化感知读取性能优化

Shiqiang Nie, Youtao Zhang, Weiguo Wu, Jun Yang
{"title":"三维闪存层RBER变化感知读取性能优化","authors":"Shiqiang Nie, Youtao Zhang, Weiguo Wu, Jun Yang","doi":"10.1109/DAC18072.2020.9218631","DOIUrl":null,"url":null,"abstract":"3D NAND flash enables the construction of large capacity Solid-State Drives (SSDs) for modern computer systems. While effectively reducing per bit cost, 3D NAND flash exhibits non-negligible process variations and thus RBER (raw bit error rate) difference across layers, which leads to sub-optimal read performance for applications with either small or large I/O requests. In this paper, we propose LRR, Layer RBER variation aware Read optimization schemes, to address the challenge. LRR consists of two schemes — LRR subpage read scheduling (SRS) and LRR fullpage allocation (FPA). SRS groups small read requests from the layers with similar RBERs to reduce the average read latency of subpage sized read requests. FPA distributes the data of a large write to multiple layers, which improves the read latency when reading from layers with large RBERs. Our experimental results show that our proposed scheme LRR reduces 46% read latency on average over the state-of-the-art.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Layer RBER Variation Aware Read Performance Optimization for 3D Flash Memories\",\"authors\":\"Shiqiang Nie, Youtao Zhang, Weiguo Wu, Jun Yang\",\"doi\":\"10.1109/DAC18072.2020.9218631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D NAND flash enables the construction of large capacity Solid-State Drives (SSDs) for modern computer systems. While effectively reducing per bit cost, 3D NAND flash exhibits non-negligible process variations and thus RBER (raw bit error rate) difference across layers, which leads to sub-optimal read performance for applications with either small or large I/O requests. In this paper, we propose LRR, Layer RBER variation aware Read optimization schemes, to address the challenge. LRR consists of two schemes — LRR subpage read scheduling (SRS) and LRR fullpage allocation (FPA). SRS groups small read requests from the layers with similar RBERs to reduce the average read latency of subpage sized read requests. FPA distributes the data of a large write to multiple layers, which improves the read latency when reading from layers with large RBERs. Our experimental results show that our proposed scheme LRR reduces 46% read latency on average over the state-of-the-art.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

3D NAND闪存能够为现代计算机系统构建大容量固态硬盘(ssd)。在有效降低每比特成本的同时,3D NAND闪存显示出不可忽略的过程变化,从而导致不同层之间的RBER(原始误码率)差异,这导致无论是小I/O请求还是大I/O请求的应用程序的读取性能都不理想。在本文中,我们提出了LRR,层RBER变化感知读取优化方案,以解决这一挑战。LRR包括两种方案:LRR子页读取调度(SRS)和LRR全页分配(FPA)。SRS将来自具有相似rber的层的小读请求分组,以减少子页面大小的读请求的平均读延迟。FPA将大的写数据分布到多个层,从而提高了从rber大的层读时的读时延。我们的实验结果表明,我们提出的LRR方案比最先进的方案平均减少了46%的读延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layer RBER Variation Aware Read Performance Optimization for 3D Flash Memories
3D NAND flash enables the construction of large capacity Solid-State Drives (SSDs) for modern computer systems. While effectively reducing per bit cost, 3D NAND flash exhibits non-negligible process variations and thus RBER (raw bit error rate) difference across layers, which leads to sub-optimal read performance for applications with either small or large I/O requests. In this paper, we propose LRR, Layer RBER variation aware Read optimization schemes, to address the challenge. LRR consists of two schemes — LRR subpage read scheduling (SRS) and LRR fullpage allocation (FPA). SRS groups small read requests from the layers with similar RBERs to reduce the average read latency of subpage sized read requests. FPA distributes the data of a large write to multiple layers, which improves the read latency when reading from layers with large RBERs. Our experimental results show that our proposed scheme LRR reduces 46% read latency on average over the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1