Mel频率倒谱系数算法在不同窗口下的行为研究

Vimal W
{"title":"Mel频率倒谱系数算法在不同窗口下的行为研究","authors":"Vimal W","doi":"10.1109/ICITIIT54346.2022.9744231","DOIUrl":null,"url":null,"abstract":"Mel Frequency Cepstral Coefficient or simply MFCC is a feature extracting algorithm can be applied on the real time signals. The Algorithm involves various steps and each step can be optimized mathematically, one of the stages is to apply a window to the signal for the signal processing proposes. There is list of windows which are actually can optimize the algorithm to get optimized. This paper notices each one of the window applications of the algorithm and its behaviours and based on the response of the windows to the signal input, particular segment of the algorithm can be modified. The modification of the small segment can lead us to the overall improvement of the MFCC algorithm.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Behaviour of Mel Frequency Cepstral Coffecient Algorithm for Different Windows\",\"authors\":\"Vimal W\",\"doi\":\"10.1109/ICITIIT54346.2022.9744231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mel Frequency Cepstral Coefficient or simply MFCC is a feature extracting algorithm can be applied on the real time signals. The Algorithm involves various steps and each step can be optimized mathematically, one of the stages is to apply a window to the signal for the signal processing proposes. There is list of windows which are actually can optimize the algorithm to get optimized. This paper notices each one of the window applications of the algorithm and its behaviours and based on the response of the windows to the signal input, particular segment of the algorithm can be modified. The modification of the small segment can lead us to the overall improvement of the MFCC algorithm.\",\"PeriodicalId\":184353,\"journal\":{\"name\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT54346.2022.9744231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Mel频率倒谱系数或简称MFCC是一种可以应用于实时信号的特征提取算法。该算法涉及多个步骤,每个步骤都可以进行数学优化,其中一个步骤是对信号施加窗口以进行信号处理。这里有一个窗口列表可以用来优化算法。本文注意到算法的每个窗口应用及其行为,并根据窗口对信号输入的响应,可以对算法的特定部分进行修改。对小段的修改可以使我们对MFCC算法进行整体改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Behaviour of Mel Frequency Cepstral Coffecient Algorithm for Different Windows
Mel Frequency Cepstral Coefficient or simply MFCC is a feature extracting algorithm can be applied on the real time signals. The Algorithm involves various steps and each step can be optimized mathematically, one of the stages is to apply a window to the signal for the signal processing proposes. There is list of windows which are actually can optimize the algorithm to get optimized. This paper notices each one of the window applications of the algorithm and its behaviours and based on the response of the windows to the signal input, particular segment of the algorithm can be modified. The modification of the small segment can lead us to the overall improvement of the MFCC algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HomeID: Home Visitors Recognition using Internet of Things and Deep Learning Algorithms Auto-Encoder LSTM for learning dependency of traffic flow by sequencing spatial-temporal traffic flow rate: A speed up technique for routing vehicles between origin and destination A Statistical Study and Analysis to Identify the Importance of Open-source Software Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets Miniature probability maps using resource limited embedded device for classification of histopathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1