神经语音预测器

R. de Figueiredo, E. Akay
{"title":"神经语音预测器","authors":"R. de Figueiredo, E. Akay","doi":"10.1109/ECCSC.2008.4611645","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new neural network architecture that deploys and extended Kalman filter (EKF) based learning algorithm. We used the new neural network for the prediction of speech signals. Simulation results show that the neural networks leads to better performance than the well known linear predictor coefficients (LPC) that uses Levinson-Durbin algorithm.","PeriodicalId":249205,"journal":{"name":"2008 4th European Conference on Circuits and Systems for Communications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural speech predictors\",\"authors\":\"R. de Figueiredo, E. Akay\",\"doi\":\"10.1109/ECCSC.2008.4611645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new neural network architecture that deploys and extended Kalman filter (EKF) based learning algorithm. We used the new neural network for the prediction of speech signals. Simulation results show that the neural networks leads to better performance than the well known linear predictor coefficients (LPC) that uses Levinson-Durbin algorithm.\",\"PeriodicalId\":249205,\"journal\":{\"name\":\"2008 4th European Conference on Circuits and Systems for Communications\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th European Conference on Circuits and Systems for Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCSC.2008.4611645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th European Conference on Circuits and Systems for Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCSC.2008.4611645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于卡尔曼滤波(EKF)学习算法的神经网络结构。我们使用新的神经网络对语音信号进行预测。仿真结果表明,该神经网络比使用Levinson-Durbin算法的线性预测系数(LPC)具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural speech predictors
In this paper we propose a new neural network architecture that deploys and extended Kalman filter (EKF) based learning algorithm. We used the new neural network for the prediction of speech signals. Simulation results show that the neural networks leads to better performance than the well known linear predictor coefficients (LPC) that uses Levinson-Durbin algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distance errors correction for the time of flight (ToF) cameras New metrics for RF spectrum occupancy Ultra wideband low noise amplifier with source degeneration and shunt series fedback Nonlinear effects in acousto-electric devices Tolerance analysis for Chebysev filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1