电子束光刻用多触发抗蚀剂

C. Popescu, A. McClelland, G. Dawson, J. Roth, D. Kazazis, Y. Ekinci, W. Theis, A. Robinson
{"title":"电子束光刻用多触发抗蚀剂","authors":"C. Popescu, A. McClelland, G. Dawson, J. Roth, D. Kazazis, Y. Ekinci, W. Theis, A. Robinson","doi":"10.1117/12.2279767","DOIUrl":null,"url":null,"abstract":"Irresistible Materials is developing a new molecular resist system that demonstrates high-resolution capability based on the Multi-trigger concept. In a Multi-Trigger resist, multiple distinct chemical reactions in chemical amplification process must take place in close proximity simultaneously during resist exposure. Thus, at the edge of a pattern feature, where the density of photo-initiators that drive the chemical reactions is low, the amplification process ceases. This significantly reduces blurring effects and enables much improved resolution and line edge roughness while maintaining the sensitivity advantages of chemical amplification. A series of studies such as enhanced resist crosslinking, elimination of the nucleophilic quencher and the addition of high-Z additives to e-beam resist (as a means to increase sensitivity and modify secondary electron blur) were conducted in order to optimize the performance of this material. The optimized conditions allowed patterning down to 28 nm pitch lines with a dose of 248 μC/cm2 using 100kV e-beam lithography, demonstrating the potential of the concept. Furthermore, it was possible to pattern 26 nm diameter pillars on a 60 nm pitch with dose of 221μC/cm2 with a line edge roughness of 2.3 nm.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"10446 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-trigger resist for electron beam lithography\",\"authors\":\"C. Popescu, A. McClelland, G. Dawson, J. Roth, D. Kazazis, Y. Ekinci, W. Theis, A. Robinson\",\"doi\":\"10.1117/12.2279767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irresistible Materials is developing a new molecular resist system that demonstrates high-resolution capability based on the Multi-trigger concept. In a Multi-Trigger resist, multiple distinct chemical reactions in chemical amplification process must take place in close proximity simultaneously during resist exposure. Thus, at the edge of a pattern feature, where the density of photo-initiators that drive the chemical reactions is low, the amplification process ceases. This significantly reduces blurring effects and enables much improved resolution and line edge roughness while maintaining the sensitivity advantages of chemical amplification. A series of studies such as enhanced resist crosslinking, elimination of the nucleophilic quencher and the addition of high-Z additives to e-beam resist (as a means to increase sensitivity and modify secondary electron blur) were conducted in order to optimize the performance of this material. The optimized conditions allowed patterning down to 28 nm pitch lines with a dose of 248 μC/cm2 using 100kV e-beam lithography, demonstrating the potential of the concept. Furthermore, it was possible to pattern 26 nm diameter pillars on a 60 nm pitch with dose of 221μC/cm2 with a line edge roughness of 2.3 nm.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"10446 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2279767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2279767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

不可抗拒材料公司正在开发一种基于多触发器概念的新型分子抗蚀剂系统,该系统具有高分辨率能力。在多触发抗蚀剂中,化学放大过程中的多个不同化学反应必须在抗蚀剂暴露过程中近距离同时发生。因此,在图案特征的边缘,驱动化学反应的光引发剂密度较低,放大过程停止。这大大减少了模糊效果,并使分辨率和线边缘粗糙度大大提高,同时保持了化学放大的灵敏度优势。为了优化该材料的性能,进行了增强抗蚀剂交联、消除亲核猝灭剂以及在电子束抗蚀剂中添加高z添加剂(作为提高灵敏度和修正二次电子模糊的手段)等一系列研究。在优化的条件下,使用100kV电子束光刻技术,在248 μC/cm2的剂量下,可以绘制到28 nm间距的线,证明了该概念的潜力。此外,在剂量为221μC/cm2、线边缘粗糙度为2.3 nm的条件下,可以在60 nm的间距上绘制直径为26 nm的柱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-trigger resist for electron beam lithography
Irresistible Materials is developing a new molecular resist system that demonstrates high-resolution capability based on the Multi-trigger concept. In a Multi-Trigger resist, multiple distinct chemical reactions in chemical amplification process must take place in close proximity simultaneously during resist exposure. Thus, at the edge of a pattern feature, where the density of photo-initiators that drive the chemical reactions is low, the amplification process ceases. This significantly reduces blurring effects and enables much improved resolution and line edge roughness while maintaining the sensitivity advantages of chemical amplification. A series of studies such as enhanced resist crosslinking, elimination of the nucleophilic quencher and the addition of high-Z additives to e-beam resist (as a means to increase sensitivity and modify secondary electron blur) were conducted in order to optimize the performance of this material. The optimized conditions allowed patterning down to 28 nm pitch lines with a dose of 248 μC/cm2 using 100kV e-beam lithography, demonstrating the potential of the concept. Furthermore, it was possible to pattern 26 nm diameter pillars on a 60 nm pitch with dose of 221μC/cm2 with a line edge roughness of 2.3 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergy between quantum computing and semiconductor technology New registration calibration strategies for MBMW tools by PROVE measurements OPC flow for non-conventional layouts: specific application to optical diffusers Lithographic performance of resist ma-N 1402 in an e-beam/i-line stepper intra-level mix and match approach High-precision optical constant characterization of materials in the EUV spectral range: from large research facilities to laboratory-based instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1