使用增广矢量量化的关系数据库压缩

W. Ng, C. Ravishankar
{"title":"使用增广矢量量化的关系数据库压缩","authors":"W. Ng, C. Ravishankar","doi":"10.1109/ICDE.1995.380352","DOIUrl":null,"url":null,"abstract":"Data compression is one way to alleviate the I/O bottleneck problem faced by I/O-intensive applications such as databases. However, this approach is not widely used because of the lack of suitable database compression techniques. In this paper, we design and implement a novel database compression technique based on vector quantization (VQ). VQ is a data compression technique with wide applicability in speech and image coding, but it is not directly suitable for databases because it is lossy. We show how one may use a lossless version of vector quantization to reduce database space storage requirements and improve disk I/O bandwidth.<<ETX>>","PeriodicalId":184415,"journal":{"name":"Proceedings of the Eleventh International Conference on Data Engineering","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Relational database compression using augmented vector quantization\",\"authors\":\"W. Ng, C. Ravishankar\",\"doi\":\"10.1109/ICDE.1995.380352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data compression is one way to alleviate the I/O bottleneck problem faced by I/O-intensive applications such as databases. However, this approach is not widely used because of the lack of suitable database compression techniques. In this paper, we design and implement a novel database compression technique based on vector quantization (VQ). VQ is a data compression technique with wide applicability in speech and image coding, but it is not directly suitable for databases because it is lossy. We show how one may use a lossless version of vector quantization to reduce database space storage requirements and improve disk I/O bandwidth.<<ETX>>\",\"PeriodicalId\":184415,\"journal\":{\"name\":\"Proceedings of the Eleventh International Conference on Data Engineering\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.1995.380352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1995.380352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

数据压缩是缓解I/O密集型应用程序(如数据库)所面临的I/O瓶颈问题的一种方法。然而,由于缺乏合适的数据库压缩技术,这种方法并没有得到广泛的应用。本文设计并实现了一种基于矢量量化(VQ)的新型数据库压缩技术。VQ是一种广泛应用于语音和图像编码的数据压缩技术,但由于其具有一定的损耗性,并不直接适用于数据库。我们展示了如何使用无损版本的矢量量化来减少数据库空间存储需求并提高磁盘I/O带宽
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relational database compression using augmented vector quantization
Data compression is one way to alleviate the I/O bottleneck problem faced by I/O-intensive applications such as databases. However, this approach is not widely used because of the lack of suitable database compression techniques. In this paper, we design and implement a novel database compression technique based on vector quantization (VQ). VQ is a data compression technique with wide applicability in speech and image coding, but it is not directly suitable for databases because it is lossy. We show how one may use a lossless version of vector quantization to reduce database space storage requirements and improve disk I/O bandwidth.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Translation of object-oriented queries to relational queries A transaction transformation approach to active rule processing Design, implementation and evaluation of SCORE (a system for content based retrieval of pictures) A structure based schema integration methodology An evaluation of sampling-based size estimation methods for selections in database systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1