{"title":"密封器:用于高性能和低开销内存加密的sram AES","authors":"Jingyao Zhang, Hoda Naghibijouybari, Elaheh Sadredini","doi":"10.1145/3531437.3539699","DOIUrl":null,"url":null,"abstract":"To provide data and code confidentiality and reduce the risk of information leak from memory or memory bus, computing systems are enhanced with encryption and decryption engine. Despite massive efforts in designing hardware enhancements for data and code protection, existing solutions incur significant performance overhead as the encryption/decryption is on the critical path. In this paper, we present Sealer, a high-performance and low-overhead in-SRAM memory encryption engine by exploiting the massive parallelism and bitline computational capability of SRAM subarrays. Sealer encrypts data before sending it off-chip and decrypts it upon receiving the memory blocks, thus, providing data confidentiality. Our proposed solution requires only minimal modifications to the existing SRAM peripheral circuitry. Sealer can achieve up to two orders of magnitude throughput-per-area improvement while consuming 3 × less energy compared to prior solutions.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption\",\"authors\":\"Jingyao Zhang, Hoda Naghibijouybari, Elaheh Sadredini\",\"doi\":\"10.1145/3531437.3539699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide data and code confidentiality and reduce the risk of information leak from memory or memory bus, computing systems are enhanced with encryption and decryption engine. Despite massive efforts in designing hardware enhancements for data and code protection, existing solutions incur significant performance overhead as the encryption/decryption is on the critical path. In this paper, we present Sealer, a high-performance and low-overhead in-SRAM memory encryption engine by exploiting the massive parallelism and bitline computational capability of SRAM subarrays. Sealer encrypts data before sending it off-chip and decrypts it upon receiving the memory blocks, thus, providing data confidentiality. Our proposed solution requires only minimal modifications to the existing SRAM peripheral circuitry. Sealer can achieve up to two orders of magnitude throughput-per-area improvement while consuming 3 × less energy compared to prior solutions.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption
To provide data and code confidentiality and reduce the risk of information leak from memory or memory bus, computing systems are enhanced with encryption and decryption engine. Despite massive efforts in designing hardware enhancements for data and code protection, existing solutions incur significant performance overhead as the encryption/decryption is on the critical path. In this paper, we present Sealer, a high-performance and low-overhead in-SRAM memory encryption engine by exploiting the massive parallelism and bitline computational capability of SRAM subarrays. Sealer encrypts data before sending it off-chip and decrypts it upon receiving the memory blocks, thus, providing data confidentiality. Our proposed solution requires only minimal modifications to the existing SRAM peripheral circuitry. Sealer can achieve up to two orders of magnitude throughput-per-area improvement while consuming 3 × less energy compared to prior solutions.