Siamese跟踪器的双向一致性约束模板更新学习

Kexin Chen, Xue Zhou, Chao Liang, Jianxiao Zou
{"title":"Siamese跟踪器的双向一致性约束模板更新学习","authors":"Kexin Chen, Xue Zhou, Chao Liang, Jianxiao Zou","doi":"10.1109/VCIP49819.2020.9301826","DOIUrl":null,"url":null,"abstract":"This paper presents an online template update method with bidirectional consistency constraint for Siamese trackers. Due to continuously applying cross-correlation mechanism between template and the search region, the performance of Siamese trackers highly relies on the fidelity of template. Therefore, besides standard linear update, learning the template update methods attract attention. Inspired by this, in this paper we adopt a learning to update model called UpdateNet as our baseline. Different from it, we further propose a novel bi-directional consistency loss as a constraint to learn the template update more smoothly and stably. Our method considers both forward and backward information for each medium frame, thus introducing a multi-stage bidirectional simulated tracking training mechanism. We apply our model to a Siamese tracker, SiamRPN and demonstrate the effectiveness and robustness of our proposed method compared with traditional UpdateNet in the Large-scale Single Object Tracking (LaSOT) dataset.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectional Consistency Constrained Template Update Learning for Siamese Trackers\",\"authors\":\"Kexin Chen, Xue Zhou, Chao Liang, Jianxiao Zou\",\"doi\":\"10.1109/VCIP49819.2020.9301826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an online template update method with bidirectional consistency constraint for Siamese trackers. Due to continuously applying cross-correlation mechanism between template and the search region, the performance of Siamese trackers highly relies on the fidelity of template. Therefore, besides standard linear update, learning the template update methods attract attention. Inspired by this, in this paper we adopt a learning to update model called UpdateNet as our baseline. Different from it, we further propose a novel bi-directional consistency loss as a constraint to learn the template update more smoothly and stably. Our method considers both forward and backward information for each medium frame, thus introducing a multi-stage bidirectional simulated tracking training mechanism. We apply our model to a Siamese tracker, SiamRPN and demonstrate the effectiveness and robustness of our proposed method compared with traditional UpdateNet in the Large-scale Single Object Tracking (LaSOT) dataset.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于双向一致性约束的连体跟踪器在线模板更新方法。由于模板与搜索区域之间的相互关联机制不断被应用,因此Siamese跟踪器的性能高度依赖于模板的保真度。因此,除了标准的线性更新之外,学习模板更新方法也备受关注。受此启发,在本文中,我们采用了一个名为UpdateNet的学习更新模型作为我们的基线。与之不同的是,我们进一步提出了一种新的双向一致性损失作为约束来学习模板更新更平稳。该方法同时考虑了每个中间帧的前向和后向信息,从而引入了一种多阶段双向模拟跟踪训练机制。我们将我们的模型应用于SiamRPN,并在大规模单目标跟踪(LaSOT)数据集中与传统的UpdateNet相比,证明了我们提出的方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bidirectional Consistency Constrained Template Update Learning for Siamese Trackers
This paper presents an online template update method with bidirectional consistency constraint for Siamese trackers. Due to continuously applying cross-correlation mechanism between template and the search region, the performance of Siamese trackers highly relies on the fidelity of template. Therefore, besides standard linear update, learning the template update methods attract attention. Inspired by this, in this paper we adopt a learning to update model called UpdateNet as our baseline. Different from it, we further propose a novel bi-directional consistency loss as a constraint to learn the template update more smoothly and stably. Our method considers both forward and backward information for each medium frame, thus introducing a multi-stage bidirectional simulated tracking training mechanism. We apply our model to a Siamese tracker, SiamRPN and demonstrate the effectiveness and robustness of our proposed method compared with traditional UpdateNet in the Large-scale Single Object Tracking (LaSOT) dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1