M. Monfared, H. Gholizadeh, Seyyed Mohammad Kalamialhashem, S. Amini, Seyyed Amir Ata Afjei, S. Ebrahim Afjei
{"title":"具有连续输入电流的三次无变压器DC-DC变换器:数学模型、仿真和实验","authors":"M. Monfared, H. Gholizadeh, Seyyed Mohammad Kalamialhashem, S. Amini, Seyyed Amir Ata Afjei, S. Ebrahim Afjei","doi":"10.1109/PEDSTC53976.2022.9767440","DOIUrl":null,"url":null,"abstract":"In this paper, a novel design of the DC-DC converters has been introduced. The voltage gain has achieved high values by the lower value of the duty cycle. Besides the Cubic form of the voltage gain, the normalized value of the current stress of the switch diodes has been low. In addition, continuous input current ripple has decreased the current stress of the input filter capacitor as well as its capacitance value. The proposed converter has been designed for the continuous current mode. Moreover, the converter has been discussed in both continuous/discontinuous current modes. Furthermore, the advantages and bold points of the converter have been expressed in the ideal mode. Finally, the simulation results besides the experimental outcomes have been presented and compared. In addition, the prototype has been designed for 80 W output power.","PeriodicalId":213924,"journal":{"name":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cubic Transformer-less DC-DC Converter with Continuous Input Current: Mathematical model, Simulation, and Experimental\",\"authors\":\"M. Monfared, H. Gholizadeh, Seyyed Mohammad Kalamialhashem, S. Amini, Seyyed Amir Ata Afjei, S. Ebrahim Afjei\",\"doi\":\"10.1109/PEDSTC53976.2022.9767440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel design of the DC-DC converters has been introduced. The voltage gain has achieved high values by the lower value of the duty cycle. Besides the Cubic form of the voltage gain, the normalized value of the current stress of the switch diodes has been low. In addition, continuous input current ripple has decreased the current stress of the input filter capacitor as well as its capacitance value. The proposed converter has been designed for the continuous current mode. Moreover, the converter has been discussed in both continuous/discontinuous current modes. Furthermore, the advantages and bold points of the converter have been expressed in the ideal mode. Finally, the simulation results besides the experimental outcomes have been presented and compared. In addition, the prototype has been designed for 80 W output power.\",\"PeriodicalId\":213924,\"journal\":{\"name\":\"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC53976.2022.9767440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC53976.2022.9767440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Cubic Transformer-less DC-DC Converter with Continuous Input Current: Mathematical model, Simulation, and Experimental
In this paper, a novel design of the DC-DC converters has been introduced. The voltage gain has achieved high values by the lower value of the duty cycle. Besides the Cubic form of the voltage gain, the normalized value of the current stress of the switch diodes has been low. In addition, continuous input current ripple has decreased the current stress of the input filter capacitor as well as its capacitance value. The proposed converter has been designed for the continuous current mode. Moreover, the converter has been discussed in both continuous/discontinuous current modes. Furthermore, the advantages and bold points of the converter have been expressed in the ideal mode. Finally, the simulation results besides the experimental outcomes have been presented and compared. In addition, the prototype has been designed for 80 W output power.