{"title":"改进经验模态分解的优化分段三次Hermite插值方法","authors":"Weifang Zhu, Heming Zhao, Xiaoping Chen","doi":"10.1109/ICSAI.2012.6223368","DOIUrl":null,"url":null,"abstract":"Empirical mode decomposition (EMD) is an adaptive method for analyzing non-stationary time series derived from linear and nonlinear systems. But the upper and lower envelopes fitted by cubic spline (CS) interpolation may often occur overshoots. In this paper, a novel envelope fitting method based on the optimized piecewise cubic Hermite (OPCH) interpolation is developed. Taking the difference between extreme as the cost function, chaos particle swarm optimization (CPSO) method is used to optimize the derivatives of the interpolation nodes. The flattest envelope with the optimized derivatives can overcome the overshoots well. Some numerical experiments conclude this paper, and comparisons are carried out with the classical EMD.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improving empirical mode decomposition with an optimized piecewise cubic Hermite interpolation method\",\"authors\":\"Weifang Zhu, Heming Zhao, Xiaoping Chen\",\"doi\":\"10.1109/ICSAI.2012.6223368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical mode decomposition (EMD) is an adaptive method for analyzing non-stationary time series derived from linear and nonlinear systems. But the upper and lower envelopes fitted by cubic spline (CS) interpolation may often occur overshoots. In this paper, a novel envelope fitting method based on the optimized piecewise cubic Hermite (OPCH) interpolation is developed. Taking the difference between extreme as the cost function, chaos particle swarm optimization (CPSO) method is used to optimize the derivatives of the interpolation nodes. The flattest envelope with the optimized derivatives can overcome the overshoots well. Some numerical experiments conclude this paper, and comparisons are carried out with the classical EMD.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving empirical mode decomposition with an optimized piecewise cubic Hermite interpolation method
Empirical mode decomposition (EMD) is an adaptive method for analyzing non-stationary time series derived from linear and nonlinear systems. But the upper and lower envelopes fitted by cubic spline (CS) interpolation may often occur overshoots. In this paper, a novel envelope fitting method based on the optimized piecewise cubic Hermite (OPCH) interpolation is developed. Taking the difference between extreme as the cost function, chaos particle swarm optimization (CPSO) method is used to optimize the derivatives of the interpolation nodes. The flattest envelope with the optimized derivatives can overcome the overshoots well. Some numerical experiments conclude this paper, and comparisons are carried out with the classical EMD.