使用云资源的数据流驱动的BPEL工作流调度

Tim Dörnemann, Ernst Juhnke, T. Noll, Dominik Seiler, Bernd Freisleben
{"title":"使用云资源的数据流驱动的BPEL工作流调度","authors":"Tim Dörnemann, Ernst Juhnke, T. Noll, Dominik Seiler, Bernd Freisleben","doi":"10.1109/CLOUD.2010.40","DOIUrl":null,"url":null,"abstract":"In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be reduced by providing additional resources from a Cloud infrastructure. If yes, Cloud resources are automatically set up and used to increase throughput. The proposed approach does not require any changes to the BPEL standard. An implementation based on the ActiveBPEL engine and Amazon's Elastic Compute Cloud is presented. Experimental results for a real-life workflow from a medical application indicate that workflow execution times can be reduced significantly.","PeriodicalId":375404,"journal":{"name":"2010 IEEE 3rd International Conference on Cloud Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources\",\"authors\":\"Tim Dörnemann, Ernst Juhnke, T. Noll, Dominik Seiler, Bernd Freisleben\",\"doi\":\"10.1109/CLOUD.2010.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be reduced by providing additional resources from a Cloud infrastructure. If yes, Cloud resources are automatically set up and used to increase throughput. The proposed approach does not require any changes to the BPEL standard. An implementation based on the ActiveBPEL engine and Amazon's Elastic Compute Cloud is presented. Experimental results for a real-life workflow from a medical application indicate that workflow execution times can be reduced significantly.\",\"PeriodicalId\":375404,\"journal\":{\"name\":\"2010 IEEE 3rd International Conference on Cloud Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 3rd International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2010.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 3rd International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2010.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文提出了一种将BPEL工作流步骤分配给可用资源的方法。该方法考虑了工作流步骤之间的数据依赖关系和运行时的资源利用率。开发的调度算法模拟了是否可以通过提供来自云基础设施的额外资源来减少工作流的完工时间。如果是,则自动设置云资源并使用云资源来提高吞吐量。建议的方法不需要对BPEL标准进行任何更改。提出了一个基于ActiveBPEL引擎和Amazon的弹性计算云的实现。对一个医疗应用的实际工作流程的实验结果表明,该方法可以显著减少工作流的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources
In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be reduced by providing additional resources from a Cloud infrastructure. If yes, Cloud resources are automatically set up and used to increase throughput. The proposed approach does not require any changes to the BPEL standard. An implementation based on the ActiveBPEL engine and Amazon's Elastic Compute Cloud is presented. Experimental results for a real-life workflow from a medical application indicate that workflow execution times can be reduced significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bridging the Gap between Desktop and the Cloud for eScience Applications Storage Management in Virtualized Cloud Environment Adaptive Data Migration in Multi-tiered Storage Based Cloud Environment Performance Measurements and Analysis of Network I/O Applications in Virtualized Cloud Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1