基于小波分解的运动图像信号分类:最佳参数设置的研究

Md.A.Mannan Joadder, M.K.M. Rahman
{"title":"基于小波分解的运动图像信号分类:最佳参数设置的研究","authors":"Md.A.Mannan Joadder, M.K.M. Rahman","doi":"10.1109/MEDITEC.2016.7835388","DOIUrl":null,"url":null,"abstract":"Motor Imagery (MI) based Brain Computer Interface (BCI) is an assistive technology, which translates the brain signals into commands to control external devices. A basic MI classification involves different steps of signal processing such as pre-processing, spatial filter, feature extraction and classification. There are numerous combinations of these steps that we can explore to achieve the better result. In this work we have systematically compared different parameter settings for wavelet-based feature extraction in search for optimum performance. Our detailed experimental results illustrate how we can choose appropriate wavelet function, order, number of decomposition levels and finally selection of coefficient at different levels.","PeriodicalId":325916,"journal":{"name":"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Classification of Motor Imagery signal using wavelet decomposition: A study for optimum parameter settings\",\"authors\":\"Md.A.Mannan Joadder, M.K.M. Rahman\",\"doi\":\"10.1109/MEDITEC.2016.7835388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor Imagery (MI) based Brain Computer Interface (BCI) is an assistive technology, which translates the brain signals into commands to control external devices. A basic MI classification involves different steps of signal processing such as pre-processing, spatial filter, feature extraction and classification. There are numerous combinations of these steps that we can explore to achieve the better result. In this work we have systematically compared different parameter settings for wavelet-based feature extraction in search for optimum performance. Our detailed experimental results illustrate how we can choose appropriate wavelet function, order, number of decomposition levels and finally selection of coefficient at different levels.\",\"PeriodicalId\":325916,\"journal\":{\"name\":\"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEDITEC.2016.7835388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEDITEC.2016.7835388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于运动图像(MI)的脑机接口(BCI)是一种辅助技术,它将大脑信号转化为控制外部设备的命令。一个基本的MI分类包括信号处理的不同步骤,如预处理、空间滤波、特征提取和分类。我们可以探索这些步骤的许多组合,以获得更好的结果。在这项工作中,我们系统地比较了基于小波的特征提取的不同参数设置,以寻求最佳性能。详细的实验结果说明了如何选择合适的小波函数、阶数、分解层数以及不同层系数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Motor Imagery signal using wavelet decomposition: A study for optimum parameter settings
Motor Imagery (MI) based Brain Computer Interface (BCI) is an assistive technology, which translates the brain signals into commands to control external devices. A basic MI classification involves different steps of signal processing such as pre-processing, spatial filter, feature extraction and classification. There are numerous combinations of these steps that we can explore to achieve the better result. In this work we have systematically compared different parameter settings for wavelet-based feature extraction in search for optimum performance. Our detailed experimental results illustrate how we can choose appropriate wavelet function, order, number of decomposition levels and finally selection of coefficient at different levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DiaHealth: A smart app for complete diabetes lifestyle management A smartphone based application to improve the health care system of Bangladesh Bangladeshi Sign Language Recognition using fingertip position Persuasive health and wellbeing application: A theory-driven design in promoting physical activity Pressure transfer function for aorta model in cardiovascular simulator: Feasibility study of wearable central blood-pressure gauge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1