{"title":"基于快速探索随机树的移动机器人路径规划算法","authors":"Yajie Wang, Yuan Huang","doi":"10.1109/IUCC/DSCI/SmartCNS.2019.00117","DOIUrl":null,"url":null,"abstract":"A path planning algorithm is proposed for the problems of high node randomness and repeatability using the Rapidly-exploring Random Tree (RRT) algorithm in the path planning. Firstly, the method of region division centered on newly generated nodes is proposed to reduce randomness, the generation rules of temporary target nodes are guided to reduce repetitiveness, then improve the efficiency of path planning through adaptive step size strategy, smooth the planned path to improve the length of the path in the end. Simulation results show that the improved RRT algorithm can effectively plan the path for mobile robots.","PeriodicalId":410905,"journal":{"name":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mobile Robot Path Planning Algorithm Based on Rapidly-Exploring Random Tree\",\"authors\":\"Yajie Wang, Yuan Huang\",\"doi\":\"10.1109/IUCC/DSCI/SmartCNS.2019.00117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A path planning algorithm is proposed for the problems of high node randomness and repeatability using the Rapidly-exploring Random Tree (RRT) algorithm in the path planning. Firstly, the method of region division centered on newly generated nodes is proposed to reduce randomness, the generation rules of temporary target nodes are guided to reduce repetitiveness, then improve the efficiency of path planning through adaptive step size strategy, smooth the planned path to improve the length of the path in the end. Simulation results show that the improved RRT algorithm can effectively plan the path for mobile robots.\",\"PeriodicalId\":410905,\"journal\":{\"name\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用快速探索随机树(RRT)算法进行路径规划,针对节点随机性和可重复性高的问题,提出了一种路径规划算法。首先,提出以新生成节点为中心的区域划分方法来降低随机性,引导临时目标节点的生成规则来降低重复性,然后通过自适应步长策略提高路径规划效率,最终对规划路径进行平滑处理,提高路径长度。仿真结果表明,改进的RRT算法可以有效地规划移动机器人的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile Robot Path Planning Algorithm Based on Rapidly-Exploring Random Tree
A path planning algorithm is proposed for the problems of high node randomness and repeatability using the Rapidly-exploring Random Tree (RRT) algorithm in the path planning. Firstly, the method of region division centered on newly generated nodes is proposed to reduce randomness, the generation rules of temporary target nodes are guided to reduce repetitiveness, then improve the efficiency of path planning through adaptive step size strategy, smooth the planned path to improve the length of the path in the end. Simulation results show that the improved RRT algorithm can effectively plan the path for mobile robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the RTWC 2019 Workshop Chairs Message from the NGDN 2019 Workshop Chairs Ideation Support System with Personalized Knowledge Level Prediction Message from the DSCI 2019 General Chairs Connection Degree Cost and Reward Based Algorithm in Cognitive Radio Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1