基于结肠几何特征的CT结肠快速准确自动分割方法

T. A. Chowdhury, P. Whelan
{"title":"基于结肠几何特征的CT结肠快速准确自动分割方法","authors":"T. A. Chowdhury, P. Whelan","doi":"10.1109/IMVIP.2011.25","DOIUrl":null,"url":null,"abstract":"In CT colonography, the first major step of colonic polyp detection is reliable segmentation of colon from CT data. In this paper, we propose a fast and accurate method for automatic colon segmentation from CT data using colon geometrical features. After removal of the lung and surrounding air voxels from CT data, labeling is performed to generate candidate regions for Colon segmentation. The centroid of the data, derived from the labeled objects is used to analyze the colon geometry. Other notable features that are used for colon segmentation are volume/length measure and end points. The proposed method was validated using a total of 99 patient datasets. Collapsed colon surface detection was 99.59% with an average of 1.59% extra colonic surface inclusion. The proposed technique takes 16.29 second to segment the colon from an abdomen CT dataset.","PeriodicalId":179414,"journal":{"name":"2011 Irish Machine Vision and Image Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Fast and Accurate Method for Automatic Segmentation of Colons at CT Colonography Based on Colon Geometrical Features\",\"authors\":\"T. A. Chowdhury, P. Whelan\",\"doi\":\"10.1109/IMVIP.2011.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In CT colonography, the first major step of colonic polyp detection is reliable segmentation of colon from CT data. In this paper, we propose a fast and accurate method for automatic colon segmentation from CT data using colon geometrical features. After removal of the lung and surrounding air voxels from CT data, labeling is performed to generate candidate regions for Colon segmentation. The centroid of the data, derived from the labeled objects is used to analyze the colon geometry. Other notable features that are used for colon segmentation are volume/length measure and end points. The proposed method was validated using a total of 99 patient datasets. Collapsed colon surface detection was 99.59% with an average of 1.59% extra colonic surface inclusion. The proposed technique takes 16.29 second to segment the colon from an abdomen CT dataset.\",\"PeriodicalId\":179414,\"journal\":{\"name\":\"2011 Irish Machine Vision and Image Processing Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Irish Machine Vision and Image Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMVIP.2011.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Irish Machine Vision and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在CT结肠镜检查中,结肠息肉检测的第一个重要步骤是从CT数据中可靠地分割结肠。本文提出了一种利用冒号几何特征对CT数据进行快速准确的自动冒号分割的方法。从CT数据中去除肺和周围空气体素后,进行标记以生成结肠分割的候选区域。从标记对象中获得的数据质心用于分析冒号几何。用于冒号分割的其他值得注意的特性是体积/长度度量和终点。使用总共99个患者数据集验证了所提出的方法。结肠塌陷表面检出率为99.59%,结肠表面外包涵率平均为1.59%。该技术从腹部CT数据集中分割结肠需要16.29秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast and Accurate Method for Automatic Segmentation of Colons at CT Colonography Based on Colon Geometrical Features
In CT colonography, the first major step of colonic polyp detection is reliable segmentation of colon from CT data. In this paper, we propose a fast and accurate method for automatic colon segmentation from CT data using colon geometrical features. After removal of the lung and surrounding air voxels from CT data, labeling is performed to generate candidate regions for Colon segmentation. The centroid of the data, derived from the labeled objects is used to analyze the colon geometry. Other notable features that are used for colon segmentation are volume/length measure and end points. The proposed method was validated using a total of 99 patient datasets. Collapsed colon surface detection was 99.59% with an average of 1.59% extra colonic surface inclusion. The proposed technique takes 16.29 second to segment the colon from an abdomen CT dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmented Vision: Seeing beyond Field of View and Occlusions via Uncalibrated Visual Transfer from Multiple Viewpoints A Feature Set for Enhanced Automatic Segmentation of Hyperspectral Terahertz Images Cell Segmentation in Time-Lapse Phase Contrast Data Optic Flow Providing External Force for Active Contours in Visually Tracking Dense Cell Population Short Stereo Baseline Retroreflector Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1