Nour Moustafa, Gideon Creech, E. Sitnikova, Marwa Keshk
{"title":"处理云计算大数据的协同异常检测框架","authors":"Nour Moustafa, Gideon Creech, E. Sitnikova, Marwa Keshk","doi":"10.1109/MILCIS.2017.8190421","DOIUrl":null,"url":null,"abstract":"With the ubiquitous computing of providing services and applications at anywhere and anytime, cloud computing is the best option as it offers flexible and pay-per-use based services to its customers. Nevertheless, security and privacy are the main challenges to its success due to its dynamic and distributed architecture, resulting in generating big data that should be carefully analysed for detecting network's vulnerabilities. In this paper, we propose a Collaborative Anomaly Detection Framework (CADF) for detecting cyber attacks from cloud computing environments. We provide the technical functions and deployment of the framework to illustrate its methodology of implementation and installation. The framework is evaluated on the UNSW-NB15 dataset to check its credibility while deploying it in cloud computing environments. The experimental results showed that this framework can easily handle large-scale systems as its implementation requires only estimating statistical measures from network observations. Moreover, the evaluation performance of the framework outperforms three state-of-the-art techniques in terms of false positive rate and detection rate.","PeriodicalId":227691,"journal":{"name":"2017 Military Communications and Information Systems Conference (MilCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Collaborative anomaly detection framework for handling big data of cloud computing\",\"authors\":\"Nour Moustafa, Gideon Creech, E. Sitnikova, Marwa Keshk\",\"doi\":\"10.1109/MILCIS.2017.8190421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ubiquitous computing of providing services and applications at anywhere and anytime, cloud computing is the best option as it offers flexible and pay-per-use based services to its customers. Nevertheless, security and privacy are the main challenges to its success due to its dynamic and distributed architecture, resulting in generating big data that should be carefully analysed for detecting network's vulnerabilities. In this paper, we propose a Collaborative Anomaly Detection Framework (CADF) for detecting cyber attacks from cloud computing environments. We provide the technical functions and deployment of the framework to illustrate its methodology of implementation and installation. The framework is evaluated on the UNSW-NB15 dataset to check its credibility while deploying it in cloud computing environments. The experimental results showed that this framework can easily handle large-scale systems as its implementation requires only estimating statistical measures from network observations. Moreover, the evaluation performance of the framework outperforms three state-of-the-art techniques in terms of false positive rate and detection rate.\",\"PeriodicalId\":227691,\"journal\":{\"name\":\"2017 Military Communications and Information Systems Conference (MilCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Military Communications and Information Systems Conference (MilCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCIS.2017.8190421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Military Communications and Information Systems Conference (MilCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCIS.2017.8190421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collaborative anomaly detection framework for handling big data of cloud computing
With the ubiquitous computing of providing services and applications at anywhere and anytime, cloud computing is the best option as it offers flexible and pay-per-use based services to its customers. Nevertheless, security and privacy are the main challenges to its success due to its dynamic and distributed architecture, resulting in generating big data that should be carefully analysed for detecting network's vulnerabilities. In this paper, we propose a Collaborative Anomaly Detection Framework (CADF) for detecting cyber attacks from cloud computing environments. We provide the technical functions and deployment of the framework to illustrate its methodology of implementation and installation. The framework is evaluated on the UNSW-NB15 dataset to check its credibility while deploying it in cloud computing environments. The experimental results showed that this framework can easily handle large-scale systems as its implementation requires only estimating statistical measures from network observations. Moreover, the evaluation performance of the framework outperforms three state-of-the-art techniques in terms of false positive rate and detection rate.