{"title":"利用并联全连通机求解旅行商问题","authors":"Qichao Tao, Jie Han","doi":"10.1145/3489517.3530595","DOIUrl":null,"url":null,"abstract":"Annealing-based Ising machines have shown promising results in solving combinatorial optimization problems. As a typical class of these problems, however, traveling salesman problems (TSPs) are very challenging to solve due to the constraints imposed on the solution. This article proposes a parallel annealing algorithm for a fully connected Ising machine that significantly improves the accuracy and performance in solving constrained combinatorial optimization problems such as the TSP. Unlike previous parallel annealing algorithms, this improved parallel annealing (IPA) algorithm efficiently solves TSPs using an exponential temperature function with a dynamic offset. Compared with digital annealing (DA) and momentum annealing (MA), the IPA reduces the run time by 44.4 times and 19.9 times for a 14-city TSP, respectively. Large scale TSPs can be more efficiently solved by taking a k-medoids clustering approach that decreases the average travel distance of a 22-city TSP by 51.8% compared with DA and by 42.0% compared with MA. This approach groups neighboring cities into clusters to form a reduced TSP, which is then solved in a hierarchical manner by using the IPA algorithm.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Solving traveling salesman problems via a parallel fully connected ising machine\",\"authors\":\"Qichao Tao, Jie Han\",\"doi\":\"10.1145/3489517.3530595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annealing-based Ising machines have shown promising results in solving combinatorial optimization problems. As a typical class of these problems, however, traveling salesman problems (TSPs) are very challenging to solve due to the constraints imposed on the solution. This article proposes a parallel annealing algorithm for a fully connected Ising machine that significantly improves the accuracy and performance in solving constrained combinatorial optimization problems such as the TSP. Unlike previous parallel annealing algorithms, this improved parallel annealing (IPA) algorithm efficiently solves TSPs using an exponential temperature function with a dynamic offset. Compared with digital annealing (DA) and momentum annealing (MA), the IPA reduces the run time by 44.4 times and 19.9 times for a 14-city TSP, respectively. Large scale TSPs can be more efficiently solved by taking a k-medoids clustering approach that decreases the average travel distance of a 22-city TSP by 51.8% compared with DA and by 42.0% compared with MA. This approach groups neighboring cities into clusters to form a reduced TSP, which is then solved in a hierarchical manner by using the IPA algorithm.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving traveling salesman problems via a parallel fully connected ising machine
Annealing-based Ising machines have shown promising results in solving combinatorial optimization problems. As a typical class of these problems, however, traveling salesman problems (TSPs) are very challenging to solve due to the constraints imposed on the solution. This article proposes a parallel annealing algorithm for a fully connected Ising machine that significantly improves the accuracy and performance in solving constrained combinatorial optimization problems such as the TSP. Unlike previous parallel annealing algorithms, this improved parallel annealing (IPA) algorithm efficiently solves TSPs using an exponential temperature function with a dynamic offset. Compared with digital annealing (DA) and momentum annealing (MA), the IPA reduces the run time by 44.4 times and 19.9 times for a 14-city TSP, respectively. Large scale TSPs can be more efficiently solved by taking a k-medoids clustering approach that decreases the average travel distance of a 22-city TSP by 51.8% compared with DA and by 42.0% compared with MA. This approach groups neighboring cities into clusters to form a reduced TSP, which is then solved in a hierarchical manner by using the IPA algorithm.