利用色彩空间进行前景检测

Ajmal Shahbaz, K. Jo
{"title":"利用色彩空间进行前景检测","authors":"Ajmal Shahbaz, K. Jo","doi":"10.23919/ICCAS.2017.8204201","DOIUrl":null,"url":null,"abstract":"This paper proposes optimal color space based probabilistic foreground detector. The intuition is to employ two most widely used color spaces (RGB and YCbCr) one at a time to model background. A decision criteria to select optimal color space is based on mean squared error (MSE). Initial frames (say 100) without any foreground information are used to compute MSE for both color spaces. Color space with minimum MSE is selected as optimal color space (OCS). Afterwards, OCS is used to model background and detect moving information. Gaussian Mixture Models (GMM) based foreground detector is used for the purpose. Furthermore, foreground mask is cleaned from undesirable noise using morphological operations. The proposed method is tested using change detection dataset. It shows promising results and outperforms conventional GMM.","PeriodicalId":140598,"journal":{"name":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploiting color spaces for the task of foreground detection\",\"authors\":\"Ajmal Shahbaz, K. Jo\",\"doi\":\"10.23919/ICCAS.2017.8204201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes optimal color space based probabilistic foreground detector. The intuition is to employ two most widely used color spaces (RGB and YCbCr) one at a time to model background. A decision criteria to select optimal color space is based on mean squared error (MSE). Initial frames (say 100) without any foreground information are used to compute MSE for both color spaces. Color space with minimum MSE is selected as optimal color space (OCS). Afterwards, OCS is used to model background and detect moving information. Gaussian Mixture Models (GMM) based foreground detector is used for the purpose. Furthermore, foreground mask is cleaned from undesirable noise using morphological operations. The proposed method is tested using change detection dataset. It shows promising results and outperforms conventional GMM.\",\"PeriodicalId\":140598,\"journal\":{\"name\":\"2017 17th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 17th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS.2017.8204201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS.2017.8204201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于最优色彩空间的概率前景检测器。直觉是使用两个最广泛使用的颜色空间(RGB和YCbCr),一次一个来模拟背景。选取最佳色彩空间的决策准则是基于均方误差(MSE)。没有任何前景信息的初始帧(例如100帧)用于计算两个颜色空间的MSE。选取MSE最小的色彩空间作为最优色彩空间(OCS)。然后,利用OCS对背景进行建模,检测运动信息。采用高斯混合模型(GMM)作为前景检测器。此外,使用形态学操作清除前景蒙版中的不良噪声。利用变化检测数据集对该方法进行了测试。它显示出良好的效果,优于传统的GMM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting color spaces for the task of foreground detection
This paper proposes optimal color space based probabilistic foreground detector. The intuition is to employ two most widely used color spaces (RGB and YCbCr) one at a time to model background. A decision criteria to select optimal color space is based on mean squared error (MSE). Initial frames (say 100) without any foreground information are used to compute MSE for both color spaces. Color space with minimum MSE is selected as optimal color space (OCS). Afterwards, OCS is used to model background and detect moving information. Gaussian Mixture Models (GMM) based foreground detector is used for the purpose. Furthermore, foreground mask is cleaned from undesirable noise using morphological operations. The proposed method is tested using change detection dataset. It shows promising results and outperforms conventional GMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of a soft wearable robotic suit on metabolic cost and gait characteristics in healthy young subjects Jumping pattern generation for one-legged jumping robot Radial basis function neural network based PID control for quad-rotor flying robot A study of eye contact for tabletop robot Multi-objective optimal operation with demand management and voltage stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1