光滑刚性楔形冲床压痕颗粒材料平面变形的数值逼近

S. Ayob, Nor Alisa Mohd Damanhuri
{"title":"光滑刚性楔形冲床压痕颗粒材料平面变形的数值逼近","authors":"S. Ayob, Nor Alisa Mohd Damanhuri","doi":"10.13189/UJME.2019.070404","DOIUrl":null,"url":null,"abstract":"In this paper, a numerical approximation of the stress equation for the indentation of granular materials by a smooth rigid wedge is presented. Plane strain conditions are assumed, and the materials obey the Mohr-Coulomb yield condition. This method determines the deformation of granular material under a smooth rigid wedge punch and construction of stress field in the deforming region which are presented by using MATLAB programme. The granular material is assumed to be in dense, solid like state. The solution only refers to the initial motion after the punch. This was then applied on one type of boundary value problem. By using MATLAB, the value of each point (x,y) and the stress variables (p,ψ) which construct the deformation field are calculated. This method provides simple and reliable algorithms for the solution of the deformation problems involving the stress variables. The results will consequently help in the improvement of the existing labs and experimental facilities in the industries and will eventually increase its efficiency.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Approximation of Plane Deformation for the Indentation of Granular Material by a Smooth Rigid Wedge Punch\",\"authors\":\"S. Ayob, Nor Alisa Mohd Damanhuri\",\"doi\":\"10.13189/UJME.2019.070404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a numerical approximation of the stress equation for the indentation of granular materials by a smooth rigid wedge is presented. Plane strain conditions are assumed, and the materials obey the Mohr-Coulomb yield condition. This method determines the deformation of granular material under a smooth rigid wedge punch and construction of stress field in the deforming region which are presented by using MATLAB programme. The granular material is assumed to be in dense, solid like state. The solution only refers to the initial motion after the punch. This was then applied on one type of boundary value problem. By using MATLAB, the value of each point (x,y) and the stress variables (p,ψ) which construct the deformation field are calculated. This method provides simple and reliable algorithms for the solution of the deformation problems involving the stress variables. The results will consequently help in the improvement of the existing labs and experimental facilities in the industries and will eventually increase its efficiency.\",\"PeriodicalId\":275027,\"journal\":{\"name\":\"Universal Journal of Mechanical Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJME.2019.070404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJME.2019.070404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了光滑刚性楔块压痕颗粒材料应力方程的数值近似。假定平面应变条件,材料服从莫尔-库仑屈服条件。该方法确定了颗粒材料在光滑刚性楔式冲床作用下的变形,并给出了变形区域应力场的构建。假定颗粒状物质处于致密的固体状态。解仅指冲孔后的初始运动。然后将其应用于一类边值问题。利用MATLAB计算了各点(x,y)的值和构成变形场的应力变量(p,ψ)。该方法为求解包含应力变量的变形问题提供了简单可靠的算法。结果将有助于改善现有的实验室和工业实验设施,并最终提高其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Approximation of Plane Deformation for the Indentation of Granular Material by a Smooth Rigid Wedge Punch
In this paper, a numerical approximation of the stress equation for the indentation of granular materials by a smooth rigid wedge is presented. Plane strain conditions are assumed, and the materials obey the Mohr-Coulomb yield condition. This method determines the deformation of granular material under a smooth rigid wedge punch and construction of stress field in the deforming region which are presented by using MATLAB programme. The granular material is assumed to be in dense, solid like state. The solution only refers to the initial motion after the punch. This was then applied on one type of boundary value problem. By using MATLAB, the value of each point (x,y) and the stress variables (p,ψ) which construct the deformation field are calculated. This method provides simple and reliable algorithms for the solution of the deformation problems involving the stress variables. The results will consequently help in the improvement of the existing labs and experimental facilities in the industries and will eventually increase its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer in a HfB2 Microchannel Heat Sink: A Numerical Approach Design and Implementation of Highly Robust Gantry-Type and Low-Cost 3D Concrete Printer for Construction Estimating Tire Forces Using MLP Neural Network and LM Algorithm: A Comparative Study Optimization of Quarter Car Suspension Dynamics Using Power Spectral Density of Irregular Road Profile CAD Modelling and Fatigue Analysis of a Wheel Rim Incorporating Finite Element Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1