Hua Qin, Zi Li, Yanfei Wang, X. Lu, Wensheng Zhang, Guiling Wang
{"title":"用于驾驶安全的路边传感器和车辆的集成网络:概念、设计和实验","authors":"Hua Qin, Zi Li, Yanfei Wang, X. Lu, Wensheng Zhang, Guiling Wang","doi":"10.1109/PERCOM.2010.5466988","DOIUrl":null,"url":null,"abstract":"One major goal of the vehicular ad hoc network (VANET) is to improve driving safety. However, the VANET may not guarantee timely detection of dangerous road conditions or maintain communication connectivity when the network density is low (e.g., in rural highways), which may pose as a big threat to driving safety. Towards addressing the problem, we propose to integrate the VANET with the inexpensive wireless sensor network (WSN). That is, sensor nodes are deployed along the roadside to sense road conditions, and to buffer and deliver information about dangerous conditions to vehicles regardless of the density or connectivity of the VANET. Along with the concept of VANET-WSN integration, new challenges arise and should be addressed. In this paper, we investigate these challenges and propose schemes for effective and efficient vehicle-sensor and sensor-sensor interactions. Prototype of the designed system has been implemented and tested in the field. Extensive simulations have also been conducted to evaluate the designed schemes. The results demonstrate various design tradeoffs, and indicate that satisfactory safety and energy efficiency can be achieved simultaneously when system parameters are appropriately chosen.","PeriodicalId":207774,"journal":{"name":"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"An integrated network of roadside sensors and vehicles for driving safety: Concept, design and experiments\",\"authors\":\"Hua Qin, Zi Li, Yanfei Wang, X. Lu, Wensheng Zhang, Guiling Wang\",\"doi\":\"10.1109/PERCOM.2010.5466988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One major goal of the vehicular ad hoc network (VANET) is to improve driving safety. However, the VANET may not guarantee timely detection of dangerous road conditions or maintain communication connectivity when the network density is low (e.g., in rural highways), which may pose as a big threat to driving safety. Towards addressing the problem, we propose to integrate the VANET with the inexpensive wireless sensor network (WSN). That is, sensor nodes are deployed along the roadside to sense road conditions, and to buffer and deliver information about dangerous conditions to vehicles regardless of the density or connectivity of the VANET. Along with the concept of VANET-WSN integration, new challenges arise and should be addressed. In this paper, we investigate these challenges and propose schemes for effective and efficient vehicle-sensor and sensor-sensor interactions. Prototype of the designed system has been implemented and tested in the field. Extensive simulations have also been conducted to evaluate the designed schemes. The results demonstrate various design tradeoffs, and indicate that satisfactory safety and energy efficiency can be achieved simultaneously when system parameters are appropriately chosen.\",\"PeriodicalId\":207774,\"journal\":{\"name\":\"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOM.2010.5466988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2010.5466988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An integrated network of roadside sensors and vehicles for driving safety: Concept, design and experiments
One major goal of the vehicular ad hoc network (VANET) is to improve driving safety. However, the VANET may not guarantee timely detection of dangerous road conditions or maintain communication connectivity when the network density is low (e.g., in rural highways), which may pose as a big threat to driving safety. Towards addressing the problem, we propose to integrate the VANET with the inexpensive wireless sensor network (WSN). That is, sensor nodes are deployed along the roadside to sense road conditions, and to buffer and deliver information about dangerous conditions to vehicles regardless of the density or connectivity of the VANET. Along with the concept of VANET-WSN integration, new challenges arise and should be addressed. In this paper, we investigate these challenges and propose schemes for effective and efficient vehicle-sensor and sensor-sensor interactions. Prototype of the designed system has been implemented and tested in the field. Extensive simulations have also been conducted to evaluate the designed schemes. The results demonstrate various design tradeoffs, and indicate that satisfactory safety and energy efficiency can be achieved simultaneously when system parameters are appropriately chosen.