采用多数数据挖掘分类算法选择技术对汽车保险的可持续性状态预测模型

D. Utari, Arief Wibowo
{"title":"采用多数数据挖掘分类算法选择技术对汽车保险的可持续性状态预测模型","authors":"D. Utari, Arief Wibowo","doi":"10.22236/teknoka.v5i.391","DOIUrl":null,"url":null,"abstract":"Asuransi kendaraan bermotor merupakan jenis usaha pertanggungan terhadap kerugian atau risiko kerusakan yang dapat timbul dari berbagai macam potensi kejadian yang menimpa kendaraan. Persaingan dalam bisnis asuransi khususnya untuk kendaraan bermotor menuntut inovasi dan strategi agar keberlangsungan bisnis tetap terjamin. Salah satu upaya yang dapat dilakukan perusahaan adalah memprediksi status keberlanjutan polis asuransi kendaraan dengan menganalisis data-data profil dan transaksi nasabah. Prediksi terhadap keputusan pemegang polis menjadi sangat penting bagi perusahaan, karena dapat menentukan strategi pemasaran yang mempengaruhi keputusan pelanggan untuk pembaharuan polis asuransi. Penelitian ini telah mengusulkan suatu model prediksi status keberlanjutan polis asuransi kendaraan dengan teknik pemilihan mayoritas dari hasil klasifikasi menggunakan algoritma- algoritma data mining seperti Naive Bayes, Support Vector Machine dan Decision Tree. Hasil pengujian menggunakan confusion matrix menunjukkan nilai akurasi terbaik diperoleh sebesar 93,57%, apapun untuk nilai precision mencapai 97,20%, dan nilai recall sebesar 95,20% serta nilai F-Measure sebesar 95,30%. Nilai evaluasi model terbaik dihasilkan menggunakan pendekatan pemilihan mayoritas (majority voting), mengungguli kinerja model prediksi berbasis pengklasifikasi tunggal.","PeriodicalId":118779,"journal":{"name":"Prosiding Seminar Nasional Teknoka","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pemodelan Prediksi Status Keberlanjutan Polis Asuransi Kendaraan dengan Teknik Pemilihan Mayoritas Menggunakan Algoritma-Algoritma Klasifikasi Data Mining\",\"authors\":\"D. Utari, Arief Wibowo\",\"doi\":\"10.22236/teknoka.v5i.391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asuransi kendaraan bermotor merupakan jenis usaha pertanggungan terhadap kerugian atau risiko kerusakan yang dapat timbul dari berbagai macam potensi kejadian yang menimpa kendaraan. Persaingan dalam bisnis asuransi khususnya untuk kendaraan bermotor menuntut inovasi dan strategi agar keberlangsungan bisnis tetap terjamin. Salah satu upaya yang dapat dilakukan perusahaan adalah memprediksi status keberlanjutan polis asuransi kendaraan dengan menganalisis data-data profil dan transaksi nasabah. Prediksi terhadap keputusan pemegang polis menjadi sangat penting bagi perusahaan, karena dapat menentukan strategi pemasaran yang mempengaruhi keputusan pelanggan untuk pembaharuan polis asuransi. Penelitian ini telah mengusulkan suatu model prediksi status keberlanjutan polis asuransi kendaraan dengan teknik pemilihan mayoritas dari hasil klasifikasi menggunakan algoritma- algoritma data mining seperti Naive Bayes, Support Vector Machine dan Decision Tree. Hasil pengujian menggunakan confusion matrix menunjukkan nilai akurasi terbaik diperoleh sebesar 93,57%, apapun untuk nilai precision mencapai 97,20%, dan nilai recall sebesar 95,20% serta nilai F-Measure sebesar 95,30%. Nilai evaluasi model terbaik dihasilkan menggunakan pendekatan pemilihan mayoritas (majority voting), mengungguli kinerja model prediksi berbasis pengklasifikasi tunggal.\",\"PeriodicalId\":118779,\"journal\":{\"name\":\"Prosiding Seminar Nasional Teknoka\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prosiding Seminar Nasional Teknoka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22236/teknoka.v5i.391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosiding Seminar Nasional Teknoka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22236/teknoka.v5i.391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机动车保险是一种对可能发生在汽车身上的各种可能造成的损失或伤害风险的保险措施。机动车保险行业竞争,尤其对要求保持可持续性业务创新和战略是有保障的。企业可以通过分析个人资料和客户交易数据来预测汽车保险的可持续性。对保单持有人决策的预测对公司来说变得非常重要,因为它们可以确定影响客户政策改革的营销策略。这项研究提出了一种预测模型状态车辆保险单的大多数选举技术的可持续性使用算法-数据挖掘算法,如天真贝叶斯分类,支持向量机和Decision Tree。用混乱矩阵进行的测试显示,精确值最高可达93.57%,精确值为97.20%,而记忆值为95.20%,F-Measure值为95.30%。最好模型的评价价值是通过多数投票方式产生的,超过了基于单一分类模型的预测表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pemodelan Prediksi Status Keberlanjutan Polis Asuransi Kendaraan dengan Teknik Pemilihan Mayoritas Menggunakan Algoritma-Algoritma Klasifikasi Data Mining
Asuransi kendaraan bermotor merupakan jenis usaha pertanggungan terhadap kerugian atau risiko kerusakan yang dapat timbul dari berbagai macam potensi kejadian yang menimpa kendaraan. Persaingan dalam bisnis asuransi khususnya untuk kendaraan bermotor menuntut inovasi dan strategi agar keberlangsungan bisnis tetap terjamin. Salah satu upaya yang dapat dilakukan perusahaan adalah memprediksi status keberlanjutan polis asuransi kendaraan dengan menganalisis data-data profil dan transaksi nasabah. Prediksi terhadap keputusan pemegang polis menjadi sangat penting bagi perusahaan, karena dapat menentukan strategi pemasaran yang mempengaruhi keputusan pelanggan untuk pembaharuan polis asuransi. Penelitian ini telah mengusulkan suatu model prediksi status keberlanjutan polis asuransi kendaraan dengan teknik pemilihan mayoritas dari hasil klasifikasi menggunakan algoritma- algoritma data mining seperti Naive Bayes, Support Vector Machine dan Decision Tree. Hasil pengujian menggunakan confusion matrix menunjukkan nilai akurasi terbaik diperoleh sebesar 93,57%, apapun untuk nilai precision mencapai 97,20%, dan nilai recall sebesar 95,20% serta nilai F-Measure sebesar 95,30%. Nilai evaluasi model terbaik dihasilkan menggunakan pendekatan pemilihan mayoritas (majority voting), mengungguli kinerja model prediksi berbasis pengklasifikasi tunggal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rancang Bangun Sistem Informasi untuk Toko Online Berbasis Aplikasi Android Perancangan Sistem Informasi Pengelolaan Aset, Kas, dan Kegiatan pada Masjid Al-Mubarak Berbasis Web Terintegrasi Penerapan Teknologi Augmented Reality pada Sistem Informasi Smart Building Berbasis Android (Studi Kasus: RS. Multazam Medika) Penggunaan Persamaan Avrami Untuk Menentukan Koefisien Konveksi Solar Still Perancangan dan Analisis Sistem Pendukung Keputusan Pembiayaan Menggunakan Metode Simple Additive Weighting (SAW) pada Koperasi Karyawan Amanah
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1