用信息论方法对一类信号进行稀疏表示和恢复

V. Meena, G. Abhilash
{"title":"用信息论方法对一类信号进行稀疏表示和恢复","authors":"V. Meena, G. Abhilash","doi":"10.1109/INDCON.2013.6725897","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss a novel scheme for arriving at a sparse representation and recovery of a class of signals using information theoretic measures. Constituent components containing distinct features of any signal, belonging to a specific class, are separated and represented sparsely in an appropriate fixed basis. The morphological correlation between each of the constituent components and a subset of basis leads to sparse representation of the signal in that basis. The basis is selected using entropy minimization based method which is known to result in coefficient concentration. Simulation studies on speech signals show that in the presence of input noise, the proposed method outperforms conventional methods.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sparse representation and recovery of a class of signals using information theoretic measures\",\"authors\":\"V. Meena, G. Abhilash\",\"doi\":\"10.1109/INDCON.2013.6725897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss a novel scheme for arriving at a sparse representation and recovery of a class of signals using information theoretic measures. Constituent components containing distinct features of any signal, belonging to a specific class, are separated and represented sparsely in an appropriate fixed basis. The morphological correlation between each of the constituent components and a subset of basis leads to sparse representation of the signal in that basis. The basis is selected using entropy minimization based method which is known to result in coefficient concentration. Simulation studies on speech signals show that in the presence of input noise, the proposed method outperforms conventional methods.\",\"PeriodicalId\":313185,\"journal\":{\"name\":\"2013 Annual IEEE India Conference (INDICON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2013.6725897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6725897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们讨论了一种新的方案来达到稀疏表示和恢复一类信号的信息理论措施。包含任何信号的不同特征的组成成分,属于一个特定的类别,被分离并稀疏地表示在一个适当的固定基。每个组成分量和基子集之间的形态相关性导致该基中的信号的稀疏表示。采用基于熵最小化的方法选择基,这种方法已知会导致系数集中。对语音信号的仿真研究表明,在存在输入噪声的情况下,该方法优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse representation and recovery of a class of signals using information theoretic measures
In this paper, we discuss a novel scheme for arriving at a sparse representation and recovery of a class of signals using information theoretic measures. Constituent components containing distinct features of any signal, belonging to a specific class, are separated and represented sparsely in an appropriate fixed basis. The morphological correlation between each of the constituent components and a subset of basis leads to sparse representation of the signal in that basis. The basis is selected using entropy minimization based method which is known to result in coefficient concentration. Simulation studies on speech signals show that in the presence of input noise, the proposed method outperforms conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of sleep mode operation with modified non-exhaustive vacation queuing Performance analysis of next generation 3-D OFDM based optical access networks under various system impairments Hardware realization of high speed elliptic curve point multiplication using multiple Point Doublers and point adders Lifetime of a CDMA wireless sensor network with route diversity RF based train collision avoidance system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1