在基于fpga的设计流程中插入自认证路径以达到防篡改的目的

Sharareh Zamanzadeh, A. Jahanian
{"title":"在基于fpga的设计流程中插入自认证路径以达到防篡改的目的","authors":"Sharareh Zamanzadeh, A. Jahanian","doi":"10.22042/ISECURE.2016.8.1.3","DOIUrl":null,"url":null,"abstract":"FPGA platforms have been widely used in many modern digital applications due to their low prototyping cost, short time-to-market, and flexibility. Field-programmability of FPGA bitstream has made it as a flexible and easy-to-use platform. However, access to bitstream degraded the security of FPGA IPs because there is no efficient method to authenticate the originality of bitstream by the FPGA programmer. The issue of secure transmission of configuration information to the FPGAs is of paramount importance to both users and IP providers. In this paper, we presented a “Self Authentication” methodology in which the originality of sub-components in bitstream is authenticated in parallel with the intrinsic operation of the design. In the case of discovering violation, the normal data flow is obfuscated and the circuit would be locked. Experimental results show that this methodology considerably improves the IP security against malicious updates with reasonable overheads. © 2016 ISC. All rights reserved.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self authentication path insertion in FPGA-based design flow for tamper-resistant purpose\",\"authors\":\"Sharareh Zamanzadeh, A. Jahanian\",\"doi\":\"10.22042/ISECURE.2016.8.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FPGA platforms have been widely used in many modern digital applications due to their low prototyping cost, short time-to-market, and flexibility. Field-programmability of FPGA bitstream has made it as a flexible and easy-to-use platform. However, access to bitstream degraded the security of FPGA IPs because there is no efficient method to authenticate the originality of bitstream by the FPGA programmer. The issue of secure transmission of configuration information to the FPGAs is of paramount importance to both users and IP providers. In this paper, we presented a “Self Authentication” methodology in which the originality of sub-components in bitstream is authenticated in parallel with the intrinsic operation of the design. In the case of discovering violation, the normal data flow is obfuscated and the circuit would be locked. Experimental results show that this methodology considerably improves the IP security against malicious updates with reasonable overheads. © 2016 ISC. All rights reserved.\",\"PeriodicalId\":436674,\"journal\":{\"name\":\"ISC Int. J. Inf. Secur.\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISC Int. J. Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22042/ISECURE.2016.8.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2016.8.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

FPGA平台由于其低原型成本、短上市时间和灵活性而广泛应用于许多现代数字应用中。FPGA位流的现场可编程性使其成为一个灵活易用的平台。然而,由于FPGA编程人员没有有效的方法来验证比特流的原创性,对比特流的访问降低了FPGA ip的安全性。配置信息安全传输到fpga的问题对于用户和IP提供商来说都是至关重要的。在本文中,我们提出了一种“自我认证”方法,其中比特流中子组件的原创性与设计的内在操作并行进行认证。在发现违规的情况下,正常的数据流将被混淆,电路将被锁定。实验结果表明,该方法在合理的开销下显著提高了IP的安全性。©2016 isc。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self authentication path insertion in FPGA-based design flow for tamper-resistant purpose
FPGA platforms have been widely used in many modern digital applications due to their low prototyping cost, short time-to-market, and flexibility. Field-programmability of FPGA bitstream has made it as a flexible and easy-to-use platform. However, access to bitstream degraded the security of FPGA IPs because there is no efficient method to authenticate the originality of bitstream by the FPGA programmer. The issue of secure transmission of configuration information to the FPGAs is of paramount importance to both users and IP providers. In this paper, we presented a “Self Authentication” methodology in which the originality of sub-components in bitstream is authenticated in parallel with the intrinsic operation of the design. In the case of discovering violation, the normal data flow is obfuscated and the circuit would be locked. Experimental results show that this methodology considerably improves the IP security against malicious updates with reasonable overheads. © 2016 ISC. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-Shot Achievable Secrecy Rate Regions for Quantum Interference Wiretap Channel Quantum Multiple Access Wiretap Channel: On the One-Shot Achievable Secrecy Rate Regions Towards a Formal Approach for Detection of Vulnerabilities in the Android Permissions System Towards event aggregation for reducing the volume of logged events during IKC stages of APT attacks A Time Randomization-Based Countermeasure Against the Template Side-Channel Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1