FlexGrip:用于fpga的软GPGPU

K. Andryc, Murtaza Merchant, R. Tessier
{"title":"FlexGrip:用于fpga的软GPGPU","authors":"K. Andryc, Murtaza Merchant, R. Tessier","doi":"10.1109/FPT.2013.6718358","DOIUrl":null,"url":null,"abstract":"Over the past decade, soft microprocessors and vector processors have been extensively used in FPGAs for a wide variety of applications. However, it is difficult to straightforwardly extend their functionality to support conditional and thread-based execution characteristic of general-purpose graphics processing units (GPGPUs) without recompiling FPGA hardware for each application. In this paper, we describe the implementation of FlexGrip, a soft GPGPU architecture which has been optimized for FPGA implementation. This architecture supports direct CUDA compilation to a binary which is executable on the FPGA-based GPGPU without hardware recompilation. Our architecture is customizable, thus providing the FPGA designer with a selection of GPGPU cores which display performance versus area tradeoffs. The benefits of our architecture are evaluated for a collection of five standard CUDA benchmarks which are compiled using standard GPGPU compilation tools. Speedups of up to 30× versus a MicroBlaze microprocessor are achieved for designs which take advantage of the conditional execution capabilities offered by FlexGrip.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"FlexGrip: A soft GPGPU for FPGAs\",\"authors\":\"K. Andryc, Murtaza Merchant, R. Tessier\",\"doi\":\"10.1109/FPT.2013.6718358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, soft microprocessors and vector processors have been extensively used in FPGAs for a wide variety of applications. However, it is difficult to straightforwardly extend their functionality to support conditional and thread-based execution characteristic of general-purpose graphics processing units (GPGPUs) without recompiling FPGA hardware for each application. In this paper, we describe the implementation of FlexGrip, a soft GPGPU architecture which has been optimized for FPGA implementation. This architecture supports direct CUDA compilation to a binary which is executable on the FPGA-based GPGPU without hardware recompilation. Our architecture is customizable, thus providing the FPGA designer with a selection of GPGPU cores which display performance versus area tradeoffs. The benefits of our architecture are evaluated for a collection of five standard CUDA benchmarks which are compiled using standard GPGPU compilation tools. Speedups of up to 30× versus a MicroBlaze microprocessor are achieved for designs which take advantage of the conditional execution capabilities offered by FlexGrip.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

在过去的十年中,软微处理器和矢量处理器在fpga中得到了广泛的应用。然而,如果不为每个应用重新编译FPGA硬件,则很难直接扩展其功能以支持通用图形处理单元(gpgpu)的条件和基于线程的执行特性。在本文中,我们描述了FlexGrip的实现,FlexGrip是一种针对FPGA实现进行优化的软GPGPU架构。该架构支持直接CUDA编译成二进制文件,该二进制文件可在基于fpga的GPGPU上执行,无需硬件重新编译。我们的架构是可定制的,因此为FPGA设计人员提供了一个GPGPU内核的选择,显示性能与面积的权衡。我们的架构的好处是通过使用标准GPGPU编译工具编译的五个标准CUDA基准的集合来评估的。与MicroBlaze微处理器相比,利用FlexGrip提供的条件执行能力的设计实现了高达30倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FlexGrip: A soft GPGPU for FPGAs
Over the past decade, soft microprocessors and vector processors have been extensively used in FPGAs for a wide variety of applications. However, it is difficult to straightforwardly extend their functionality to support conditional and thread-based execution characteristic of general-purpose graphics processing units (GPGPUs) without recompiling FPGA hardware for each application. In this paper, we describe the implementation of FlexGrip, a soft GPGPU architecture which has been optimized for FPGA implementation. This architecture supports direct CUDA compilation to a binary which is executable on the FPGA-based GPGPU without hardware recompilation. Our architecture is customizable, thus providing the FPGA designer with a selection of GPGPU cores which display performance versus area tradeoffs. The benefits of our architecture are evaluated for a collection of five standard CUDA benchmarks which are compiled using standard GPGPU compilation tools. Speedups of up to 30× versus a MicroBlaze microprocessor are achieved for designs which take advantage of the conditional execution capabilities offered by FlexGrip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and optimization of heterogeneous tree-based FPGA using 3D technology Mobile GPU shader processor based on non-blocking Coarse Grained Reconfigurable Arrays architecture An FPGA-cluster-accelerated match engine for content-based image retrieval A non-intrusive portable fault injection framework to assess reliability of FPGA-based designs Quantum FPGA architecture design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1