FlowTuner:利用参数知识转移的多级EDA流量调谐器

Rongjian Liang, Jinwook Jung, Hua Xiang, L. Reddy, Alexey Lvov, Jiang Hu, Gi-Joon Nam
{"title":"FlowTuner:利用参数知识转移的多级EDA流量调谐器","authors":"Rongjian Liang, Jinwook Jung, Hua Xiang, L. Reddy, Alexey Lvov, Jiang Hu, Gi-Joon Nam","doi":"10.1109/ICCAD51958.2021.9643564","DOIUrl":null,"url":null,"abstract":"EDA tools provide a large spectrum of parameters to help designers achieve the maximized PPA of designs. The corresponding enormous solution space, however, hinders designers from navigating towards optimal solutions. In this paper, we propose a multi-stage automatic flow tuning tool, named FlowTuner, for efficient and effective parameter tuning of VLSI design flow. It utilizes both exploitation using transferred parameter knowledge from archival design data and exploration via a multi-stage cooperative co-evolutionary framework. Furthermore, novel flow jump-start and early-stop techniques are developed to reduce the overall runtime for tuning. Experiments on a set of IWLS 2005 benchmark circuits through a commercial tool flow demonstrate that FlowTuner produces considerably better design outcomes in 50 % shorter turnaround time compared to the state-of-the-art flow tuning techniques.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FlowTuner: A Multi-Stage EDA Flow Tuner Exploiting Parameter Knowledge Transfer\",\"authors\":\"Rongjian Liang, Jinwook Jung, Hua Xiang, L. Reddy, Alexey Lvov, Jiang Hu, Gi-Joon Nam\",\"doi\":\"10.1109/ICCAD51958.2021.9643564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EDA tools provide a large spectrum of parameters to help designers achieve the maximized PPA of designs. The corresponding enormous solution space, however, hinders designers from navigating towards optimal solutions. In this paper, we propose a multi-stage automatic flow tuning tool, named FlowTuner, for efficient and effective parameter tuning of VLSI design flow. It utilizes both exploitation using transferred parameter knowledge from archival design data and exploration via a multi-stage cooperative co-evolutionary framework. Furthermore, novel flow jump-start and early-stop techniques are developed to reduce the overall runtime for tuning. Experiments on a set of IWLS 2005 benchmark circuits through a commercial tool flow demonstrate that FlowTuner produces considerably better design outcomes in 50 % shorter turnaround time compared to the state-of-the-art flow tuning techniques.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

EDA工具提供了大量的参数,以帮助设计人员实现设计的最大PPA。然而,相应的巨大解决方案空间阻碍了设计师找到最优解决方案。本文提出了一种多级自动流程调谐工具FlowTuner,以实现VLSI设计流程的高效参数调谐。它利用从档案设计数据中转移的参数知识进行开发,并通过多阶段协同进化框架进行探索。此外,还开发了新的流启动和早停技术,以减少调优的总运行时间。通过商业工具流在IWLS 2005基准电路上的实验表明,与最先进的流量调谐技术相比,FlowTuner在缩短50%的周转时间内产生了更好的设计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FlowTuner: A Multi-Stage EDA Flow Tuner Exploiting Parameter Knowledge Transfer
EDA tools provide a large spectrum of parameters to help designers achieve the maximized PPA of designs. The corresponding enormous solution space, however, hinders designers from navigating towards optimal solutions. In this paper, we propose a multi-stage automatic flow tuning tool, named FlowTuner, for efficient and effective parameter tuning of VLSI design flow. It utilizes both exploitation using transferred parameter knowledge from archival design data and exploration via a multi-stage cooperative co-evolutionary framework. Furthermore, novel flow jump-start and early-stop techniques are developed to reduce the overall runtime for tuning. Experiments on a set of IWLS 2005 benchmark circuits through a commercial tool flow demonstrate that FlowTuner produces considerably better design outcomes in 50 % shorter turnaround time compared to the state-of-the-art flow tuning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1