Jaclyn L. Ocumpaugh, R. Baker, M. O. S. Pedro, M. Hawn, Cristina Heffernan, N. Heffernan, Stefan Slater
{"title":"ASSISTments大学预测模型(ACPM)的指导顾问报告","authors":"Jaclyn L. Ocumpaugh, R. Baker, M. O. S. Pedro, M. Hawn, Cristina Heffernan, N. Heffernan, Stefan Slater","doi":"10.1145/3027385.3027435","DOIUrl":null,"url":null,"abstract":"Advances in the learning analytics community have created opportunities to deliver early warnings that alert teachers and instructors when a student is at risk of not meeting academic goals [6], [71]. Alert systems have also been developed for school district leaders [33] and for academic advisors in higher education [39], but other professionals in the K-12 system, namely guidance counselors, have not been widely served by these systems. In this study, we use college enrollment models created for the ASSISTments learning system [55] to develop reports that target the needs of these professionals, who often work directly with students, but usually not in classroom settings. These reports are designed to facilitate guidance counselors' efforts to help students to set long term academic and career goals. As such, they provide the calculated likelihood that a student will attend college (the ASSISTments College Prediction Model or ACPM), alongside student engagement and learning measures. Using design principles from risk communication research and student feedback theories to inform a co-design process, we developed reports that can inform guidance counselor efforts to support student achievement.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Guidance counselor reports of the ASSISTments college prediction model (ACPM)\",\"authors\":\"Jaclyn L. Ocumpaugh, R. Baker, M. O. S. Pedro, M. Hawn, Cristina Heffernan, N. Heffernan, Stefan Slater\",\"doi\":\"10.1145/3027385.3027435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in the learning analytics community have created opportunities to deliver early warnings that alert teachers and instructors when a student is at risk of not meeting academic goals [6], [71]. Alert systems have also been developed for school district leaders [33] and for academic advisors in higher education [39], but other professionals in the K-12 system, namely guidance counselors, have not been widely served by these systems. In this study, we use college enrollment models created for the ASSISTments learning system [55] to develop reports that target the needs of these professionals, who often work directly with students, but usually not in classroom settings. These reports are designed to facilitate guidance counselors' efforts to help students to set long term academic and career goals. As such, they provide the calculated likelihood that a student will attend college (the ASSISTments College Prediction Model or ACPM), alongside student engagement and learning measures. Using design principles from risk communication research and student feedback theories to inform a co-design process, we developed reports that can inform guidance counselor efforts to support student achievement.\",\"PeriodicalId\":160897,\"journal\":{\"name\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3027435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Guidance counselor reports of the ASSISTments college prediction model (ACPM)
Advances in the learning analytics community have created opportunities to deliver early warnings that alert teachers and instructors when a student is at risk of not meeting academic goals [6], [71]. Alert systems have also been developed for school district leaders [33] and for academic advisors in higher education [39], but other professionals in the K-12 system, namely guidance counselors, have not been widely served by these systems. In this study, we use college enrollment models created for the ASSISTments learning system [55] to develop reports that target the needs of these professionals, who often work directly with students, but usually not in classroom settings. These reports are designed to facilitate guidance counselors' efforts to help students to set long term academic and career goals. As such, they provide the calculated likelihood that a student will attend college (the ASSISTments College Prediction Model or ACPM), alongside student engagement and learning measures. Using design principles from risk communication research and student feedback theories to inform a co-design process, we developed reports that can inform guidance counselor efforts to support student achievement.