{"title":"一种用于过滤传感器网络中注入的假数据的交错逐跳认证方案","authors":"Sencun Zhu, Sanjeev Setia, S. Jajodia, P. Ning","doi":"10.1109/SECPRI.2004.1301328","DOIUrl":null,"url":null,"abstract":"Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects false data into the network with the goal of deceiving the base station or depleting the resources of the relaying nodes. Standard authentication mechanisms cannot prevent this attack if the adversary has compromised one or a small number of sensor nodes. In this paper, we present an interleaved hop-by-hop authentication scheme that guarantees that the base station will detect any injected false data packets when no more than a certain number t nodes are compromised. Further, our scheme provides an upper bound B for the number of hops that a false data packet could be forwarded before it is detected and dropped, given that there are up to t colluding compromised nodes. We show that in the worst case B is O(t/sup 2/). Through performance analysis, we show that our scheme is efficient with respect to the security it provides, and it also allows a tradeoff between security and performance.","PeriodicalId":447471,"journal":{"name":"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"700","resultStr":"{\"title\":\"An interleaved hop-by-hop authentication scheme for filtering of injected false data in sensor networks\",\"authors\":\"Sencun Zhu, Sanjeev Setia, S. Jajodia, P. Ning\",\"doi\":\"10.1109/SECPRI.2004.1301328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects false data into the network with the goal of deceiving the base station or depleting the resources of the relaying nodes. Standard authentication mechanisms cannot prevent this attack if the adversary has compromised one or a small number of sensor nodes. In this paper, we present an interleaved hop-by-hop authentication scheme that guarantees that the base station will detect any injected false data packets when no more than a certain number t nodes are compromised. Further, our scheme provides an upper bound B for the number of hops that a false data packet could be forwarded before it is detected and dropped, given that there are up to t colluding compromised nodes. We show that in the worst case B is O(t/sup 2/). Through performance analysis, we show that our scheme is efficient with respect to the security it provides, and it also allows a tradeoff between security and performance.\",\"PeriodicalId\":447471,\"journal\":{\"name\":\"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"700\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECPRI.2004.1301328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECPRI.2004.1301328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An interleaved hop-by-hop authentication scheme for filtering of injected false data in sensor networks
Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects false data into the network with the goal of deceiving the base station or depleting the resources of the relaying nodes. Standard authentication mechanisms cannot prevent this attack if the adversary has compromised one or a small number of sensor nodes. In this paper, we present an interleaved hop-by-hop authentication scheme that guarantees that the base station will detect any injected false data packets when no more than a certain number t nodes are compromised. Further, our scheme provides an upper bound B for the number of hops that a false data packet could be forwarded before it is detected and dropped, given that there are up to t colluding compromised nodes. We show that in the worst case B is O(t/sup 2/). Through performance analysis, we show that our scheme is efficient with respect to the security it provides, and it also allows a tradeoff between security and performance.