最终是线性化的共享对象

M. Serafini, D. Dobre, Matthias Majuntke, P. Bokor, N. Suri
{"title":"最终是线性化的共享对象","authors":"M. Serafini, D. Dobre, Matthias Majuntke, P. Bokor, N. Suri","doi":"10.1145/1835698.1835723","DOIUrl":null,"url":null,"abstract":"Linearizability is the strongest known consistency property of shared objects. In asynchronous message passing systems, Linearizability can be achieved with ◊S and a majority of correct processes. In this paper we introduce the notion of Eventual Linearizability, the strongest known consistency property that can be attained with ◊S and any number of crashes. We show that linearizable shared object implementations can be augmented to support weak operations, which need to be linearized only eventually. Unlike strong operations that require to be always linearized, weak operations terminate in worst case runs. However, there is a tradeoff between ensuring termination of weak and strong operations when processes have only access to ◊S. If weak operations terminate in the worst case, then we show that strong operations terminate only in the absence of concurrent weak operations. Finally, we show that an implementation based on P exists that guarantees termination of all operations.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Eventually linearizable shared objects\",\"authors\":\"M. Serafini, D. Dobre, Matthias Majuntke, P. Bokor, N. Suri\",\"doi\":\"10.1145/1835698.1835723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linearizability is the strongest known consistency property of shared objects. In asynchronous message passing systems, Linearizability can be achieved with ◊S and a majority of correct processes. In this paper we introduce the notion of Eventual Linearizability, the strongest known consistency property that can be attained with ◊S and any number of crashes. We show that linearizable shared object implementations can be augmented to support weak operations, which need to be linearized only eventually. Unlike strong operations that require to be always linearized, weak operations terminate in worst case runs. However, there is a tradeoff between ensuring termination of weak and strong operations when processes have only access to ◊S. If weak operations terminate in the worst case, then we show that strong operations terminate only in the absence of concurrent weak operations. Finally, we show that an implementation based on P exists that guarantees termination of all operations.\",\"PeriodicalId\":447863,\"journal\":{\"name\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835698.1835723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

线性化是已知的共享对象最强的一致性属性。在异步消息传递系统中,线性化可以通过- S和大多数正确的过程来实现。在本文中,我们引入了最终线性化的概念,这是已知最强的一致性性质,可以在任意数量的碰撞中获得。我们展示了可线性化的共享对象实现可以扩展到支持弱操作,这些操作最终只需要线性化。与需要始终线性化的强操作不同,弱操作在最坏情况下运行时终止。然而,当过程只能访问- S时,在确保终止弱操作和强操作之间存在权衡。如果弱操作在最坏的情况下终止,那么我们证明强操作仅在没有并发的弱操作时终止。最后,我们证明了存在一个基于P的实现,它保证了所有操作的终止。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eventually linearizable shared objects
Linearizability is the strongest known consistency property of shared objects. In asynchronous message passing systems, Linearizability can be achieved with ◊S and a majority of correct processes. In this paper we introduce the notion of Eventual Linearizability, the strongest known consistency property that can be attained with ◊S and any number of crashes. We show that linearizable shared object implementations can be augmented to support weak operations, which need to be linearized only eventually. Unlike strong operations that require to be always linearized, weak operations terminate in worst case runs. However, there is a tradeoff between ensuring termination of weak and strong operations when processes have only access to ◊S. If weak operations terminate in the worst case, then we show that strong operations terminate only in the absence of concurrent weak operations. Finally, we show that an implementation based on P exists that guarantees termination of all operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brief announcement: towards robust medium access in multi-hop networks Brief announcement: capacity of byzantine agreement with finite link capacity - complete characterization of four-node networks Brief announcement: locally-accessible implementations for distributed shared memory multiprocessors Brief announcement: sources of instability in data center multicast Bayesian ignorance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1