基于ARMA-GARCH非高斯多元模型的风险管理与投资组合预算

N. Nooshi, Y. S. Kim, S. Rachev, F. Fabozzi
{"title":"基于ARMA-GARCH非高斯多元模型的风险管理与投资组合预算","authors":"N. Nooshi, Y. S. Kim, S. Rachev, F. Fabozzi","doi":"10.2139/ssrn.2022513","DOIUrl":null,"url":null,"abstract":"In this work, we propose an ARMA(1,1)-GARCH(1,1) model with standard classical tempered stable (CTS) innovations for historical daily returns of 29 selected stocks. The non-Gaussian nature of the innovations captures the fat-tail property observed in data. The dependency between different assets is modeled by a student’s t copula. We fit the data and estimate the parameters of the model and perform statistical goodness-of-fit tests for fitted parameters. Based on the multivariate model consisting of standard CTS marginals and student’s t copula, we construct ARMA-GARCH Monte-Carlo paths for daily returns of each single stock. Daily VaR is computed for an equally weighted portfolio, and for a time span of 250 trading days, the model is being backtested. It is shown that in comparison with the Gaussian model, the proposed CTS-t copula offers more realistic estimation for the portfolio risk. Moreover we study the portfolio selection problem. We compute the marginal VaR and Component VaR of single stocks for the VaR optimized portfolio. We consider an active portfolio budgeting method, where we change the portfolio composition according to marginal VaR measurements. We show that the resulting portfolio converges to the VaR minimized portfolio in the 29 dimensional space of portfolio weight vectors. We perform a return to VaR ratio, performance test, to realize the ”costs” of this risk reduction action in terms of potential return suppression. Little transaction costs due to limited and relatively small position modification in portfolio, presents an efficient management scenario for pension funds and other investment organization, where relative changes in investment positions are restricted.","PeriodicalId":178382,"journal":{"name":"ERN: Portfolio Optimization (Topic)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk Management and Portfolio Budgeting Based on ARMA-GARCH Non-Gaussian Multivariate Model\",\"authors\":\"N. Nooshi, Y. S. Kim, S. Rachev, F. Fabozzi\",\"doi\":\"10.2139/ssrn.2022513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose an ARMA(1,1)-GARCH(1,1) model with standard classical tempered stable (CTS) innovations for historical daily returns of 29 selected stocks. The non-Gaussian nature of the innovations captures the fat-tail property observed in data. The dependency between different assets is modeled by a student’s t copula. We fit the data and estimate the parameters of the model and perform statistical goodness-of-fit tests for fitted parameters. Based on the multivariate model consisting of standard CTS marginals and student’s t copula, we construct ARMA-GARCH Monte-Carlo paths for daily returns of each single stock. Daily VaR is computed for an equally weighted portfolio, and for a time span of 250 trading days, the model is being backtested. It is shown that in comparison with the Gaussian model, the proposed CTS-t copula offers more realistic estimation for the portfolio risk. Moreover we study the portfolio selection problem. We compute the marginal VaR and Component VaR of single stocks for the VaR optimized portfolio. We consider an active portfolio budgeting method, where we change the portfolio composition according to marginal VaR measurements. We show that the resulting portfolio converges to the VaR minimized portfolio in the 29 dimensional space of portfolio weight vectors. We perform a return to VaR ratio, performance test, to realize the ”costs” of this risk reduction action in terms of potential return suppression. Little transaction costs due to limited and relatively small position modification in portfolio, presents an efficient management scenario for pension funds and other investment organization, where relative changes in investment positions are restricted.\",\"PeriodicalId\":178382,\"journal\":{\"name\":\"ERN: Portfolio Optimization (Topic)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Portfolio Optimization (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2022513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Portfolio Optimization (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2022513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一个具有标准经典调和稳定(CTS)创新的ARMA(1,1)-GARCH(1,1)模型,用于29只选定股票的历史日收益。创新的非高斯性质捕获了在数据中观察到的肥尾特性。不同资产之间的依赖关系由学生的t - copula建模。我们拟合数据并估计模型的参数,并对拟合参数进行统计拟合优度检验。基于由标准CTS边际和学生t公式组成的多元模型,我们构建了每只个股日收益的ARMA-GARCH蒙特卡洛路径。日风险价值是对一个同等权重的投资组合进行计算的,在250个交易日的时间跨度内,该模型正在进行回测。结果表明,与高斯模型相比,本文提出的CTS-t组合模型能更真实地估计投资组合的风险。此外,我们还研究了投资组合选择问题。对VaR优化后的投资组合,计算了个股的边际VaR和成分VaR。我们考虑一种主动投资组合预算方法,根据边际VaR测量值来改变投资组合的组成。我们证明了所得的投资组合在29维的投资组合权向量空间收敛于VaR最小化的投资组合。我们进行了回报与VaR比率的绩效测试,以实现这种风险降低行动在潜在回报抑制方面的“成本”。由于投资组合中的头寸变动有限且相对较小,交易成本低,为养老基金和其他投资机构提供了一种有效的管理场景,在这种情况下,投资头寸的相对变化受到限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risk Management and Portfolio Budgeting Based on ARMA-GARCH Non-Gaussian Multivariate Model
In this work, we propose an ARMA(1,1)-GARCH(1,1) model with standard classical tempered stable (CTS) innovations for historical daily returns of 29 selected stocks. The non-Gaussian nature of the innovations captures the fat-tail property observed in data. The dependency between different assets is modeled by a student’s t copula. We fit the data and estimate the parameters of the model and perform statistical goodness-of-fit tests for fitted parameters. Based on the multivariate model consisting of standard CTS marginals and student’s t copula, we construct ARMA-GARCH Monte-Carlo paths for daily returns of each single stock. Daily VaR is computed for an equally weighted portfolio, and for a time span of 250 trading days, the model is being backtested. It is shown that in comparison with the Gaussian model, the proposed CTS-t copula offers more realistic estimation for the portfolio risk. Moreover we study the portfolio selection problem. We compute the marginal VaR and Component VaR of single stocks for the VaR optimized portfolio. We consider an active portfolio budgeting method, where we change the portfolio composition according to marginal VaR measurements. We show that the resulting portfolio converges to the VaR minimized portfolio in the 29 dimensional space of portfolio weight vectors. We perform a return to VaR ratio, performance test, to realize the ”costs” of this risk reduction action in terms of potential return suppression. Little transaction costs due to limited and relatively small position modification in portfolio, presents an efficient management scenario for pension funds and other investment organization, where relative changes in investment positions are restricted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Buy Low Sell High: A High Frequency Trading Perspective The Strategy Approval Decision: A Sharpe Ratio Indifference Curve Approach Risk Management and Portfolio Budgeting Based on ARMA-GARCH Non-Gaussian Multivariate Model Constant Proportion Portfolio Insurance Under Regime Switching Exponential L evy Process Ensemble Properties of High Frequency Data and Intraday Trading Rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1