多文档摘要的近似动态规划改进

Yihui Luo, Shuchu Xiong
{"title":"多文档摘要的近似动态规划改进","authors":"Yihui Luo, Shuchu Xiong","doi":"10.1109/SPAC.2014.6982716","DOIUrl":null,"url":null,"abstract":"A new improved approximate dynamic programming for multi-document summarization is presented. Our proposed algorithm improves the state-of-art approximate dynamic programming algorithm for multi-document summarization in [1]. The improvement of our method is attributed to the adding search in the backward direction at each sequential step of the dynamic programming procedure. The experimental results for multi-document summarization tasks on DUC2002 and DUC2004 data sets validate the effectiveness of our proposed method.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improvement on approximate dynamic programming for multi-document summarization\",\"authors\":\"Yihui Luo, Shuchu Xiong\",\"doi\":\"10.1109/SPAC.2014.6982716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new improved approximate dynamic programming for multi-document summarization is presented. Our proposed algorithm improves the state-of-art approximate dynamic programming algorithm for multi-document summarization in [1]. The improvement of our method is attributed to the adding search in the backward direction at each sequential step of the dynamic programming procedure. The experimental results for multi-document summarization tasks on DUC2002 and DUC2004 data sets validate the effectiveness of our proposed method.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的改进的多文档摘要近似动态规划方法。本文提出的算法改进了文献[1]中最先进的多文档摘要近似动态规划算法。该方法的改进是由于在动态规划过程的每个顺序步骤中都进行了反向加法搜索。在DUC2002和DUC2004数据集上的多文档摘要实验结果验证了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improvement on approximate dynamic programming for multi-document summarization
A new improved approximate dynamic programming for multi-document summarization is presented. Our proposed algorithm improves the state-of-art approximate dynamic programming algorithm for multi-document summarization in [1]. The improvement of our method is attributed to the adding search in the backward direction at each sequential step of the dynamic programming procedure. The experimental results for multi-document summarization tasks on DUC2002 and DUC2004 data sets validate the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1