基于模糊K近邻分类器的牛类分类系统

Hamdi A. Mahmoud, Hagar M. El Hadad, F. A. Mousa, A. Hassanien
{"title":"基于模糊K近邻分类器的牛类分类系统","authors":"Hamdi A. Mahmoud, Hagar M. El Hadad, F. A. Mousa, A. Hassanien","doi":"10.1109/ICIEV.2015.7334010","DOIUrl":null,"url":null,"abstract":"This paper presents cattle classifications system using Fuzzy K- Nearest Neighbor Classifier (FKNN). The proposed system consists of two phases; segmentation and feature extraction phase and classifications phase. Expectation Maximization image segmentation (EM) algorithm was used to segments and extracts texture feature of each cattle muzzle image and their image color. Then, it followed by applying the FKNN for classification. The data sets used contains thirty two groups of cattle muzzle images. The experimental result proves the advancement of FKNN classifier better than other classification technique. FKNN achieves 100% classification accuracy compared to 88% classification accuracy achieved from K- Nearest Neighbor Classifier (KNN) classification system.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cattle classifications system using Fuzzy K- Nearest Neighbor Classifier\",\"authors\":\"Hamdi A. Mahmoud, Hagar M. El Hadad, F. A. Mousa, A. Hassanien\",\"doi\":\"10.1109/ICIEV.2015.7334010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents cattle classifications system using Fuzzy K- Nearest Neighbor Classifier (FKNN). The proposed system consists of two phases; segmentation and feature extraction phase and classifications phase. Expectation Maximization image segmentation (EM) algorithm was used to segments and extracts texture feature of each cattle muzzle image and their image color. Then, it followed by applying the FKNN for classification. The data sets used contains thirty two groups of cattle muzzle images. The experimental result proves the advancement of FKNN classifier better than other classification technique. FKNN achieves 100% classification accuracy compared to 88% classification accuracy achieved from K- Nearest Neighbor Classifier (KNN) classification system.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7334010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了基于模糊K近邻分类器(FKNN)的牛类分类系统。拟议的系统包括两个阶段;分割和特征提取阶段和分类阶段。采用期望最大化图像分割(EM)算法对每张牛口部图像的纹理特征和图像颜色进行分割和提取。然后,应用FKNN进行分类。使用的数据集包含32组牛的口吻图像。实验结果表明,FKNN分类器的先进性优于其他分类技术。与K-最近邻分类器(KNN)分类系统的88%的分类准确率相比,FKNN实现了100%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cattle classifications system using Fuzzy K- Nearest Neighbor Classifier
This paper presents cattle classifications system using Fuzzy K- Nearest Neighbor Classifier (FKNN). The proposed system consists of two phases; segmentation and feature extraction phase and classifications phase. Expectation Maximization image segmentation (EM) algorithm was used to segments and extracts texture feature of each cattle muzzle image and their image color. Then, it followed by applying the FKNN for classification. The data sets used contains thirty two groups of cattle muzzle images. The experimental result proves the advancement of FKNN classifier better than other classification technique. FKNN achieves 100% classification accuracy compared to 88% classification accuracy achieved from K- Nearest Neighbor Classifier (KNN) classification system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Static output feedback control design for Takagi-Sugeno descriptor fuzzy systems FRIT based PI tuning for speed control of PMSM using FPGA for high frequency SiC MOSFET inverter A homogeneous region based methodology for text extraction from natural scene images People re-identification using 3D descriptor with skeleton information Development of battery-shaped device unified communication line and power line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1