PETS2021:穿透叶探测和跟踪挑战与评估

Luis Patino, Jonathan N. Boyle, J. Ferryman, Jonas Auer, Julian Pegoraro, R. Pflugfelder, Mertcan Cokbas, J. Konrad, P. Ishwar, Giulia Slavic, L. Marcenaro, Yifan Jiang, Youngsaeng Jin, Hanseok Ko, Guangliang Zhao, Guy Ben-Yosef, Jianwei Qiu
{"title":"PETS2021:穿透叶探测和跟踪挑战与评估","authors":"Luis Patino, Jonathan N. Boyle, J. Ferryman, Jonas Auer, Julian Pegoraro, R. Pflugfelder, Mertcan Cokbas, J. Konrad, P. Ishwar, Giulia Slavic, L. Marcenaro, Yifan Jiang, Youngsaeng Jin, Hanseok Ko, Guangliang Zhao, Guy Ben-Yosef, Jianwei Qiu","doi":"10.1109/AVSS52988.2021.9663837","DOIUrl":null,"url":null,"abstract":"This paper presents the outcomes of the PETS2021 challenge held in conjunction with AVSS2021 and sponsored by the EU FOLDOUT project. The challenge comprises the publication of a novel video surveillance dataset on through-foliage detection, the defined challenges addressing person detection and tracking in fragmented occlusion scenarios, and quantitative and qualitative performance evaluation of challenge results submitted by six worldwide participants. The results show that while several detection and tracking methods achieve overall good results, through-foliage detection and tracking remains a challenging task for surveillance systems especially as it serves as the input to behaviour (threat) recognition.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PETS2021: Through-foliage detection and tracking challenge and evaluation\",\"authors\":\"Luis Patino, Jonathan N. Boyle, J. Ferryman, Jonas Auer, Julian Pegoraro, R. Pflugfelder, Mertcan Cokbas, J. Konrad, P. Ishwar, Giulia Slavic, L. Marcenaro, Yifan Jiang, Youngsaeng Jin, Hanseok Ko, Guangliang Zhao, Guy Ben-Yosef, Jianwei Qiu\",\"doi\":\"10.1109/AVSS52988.2021.9663837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the outcomes of the PETS2021 challenge held in conjunction with AVSS2021 and sponsored by the EU FOLDOUT project. The challenge comprises the publication of a novel video surveillance dataset on through-foliage detection, the defined challenges addressing person detection and tracking in fragmented occlusion scenarios, and quantitative and qualitative performance evaluation of challenge results submitted by six worldwide participants. The results show that while several detection and tracking methods achieve overall good results, through-foliage detection and tracking remains a challenging task for surveillance systems especially as it serves as the input to behaviour (threat) recognition.\",\"PeriodicalId\":246327,\"journal\":{\"name\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS52988.2021.9663837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了由欧盟FOLDOUT项目赞助的与AVSS2021一起举行的PETS2021挑战的结果。挑战包括发布一个关于树叶检测的新型视频监控数据集,解决碎片遮挡场景中人员检测和跟踪的定义挑战,以及对六个全球参与者提交的挑战结果进行定量和定性的性能评估。结果表明,虽然几种检测和跟踪方法总体上取得了良好的效果,但对于监视系统来说,穿透叶检测和跟踪仍然是一项具有挑战性的任务,特别是当它作为行为(威胁)识别的输入时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PETS2021: Through-foliage detection and tracking challenge and evaluation
This paper presents the outcomes of the PETS2021 challenge held in conjunction with AVSS2021 and sponsored by the EU FOLDOUT project. The challenge comprises the publication of a novel video surveillance dataset on through-foliage detection, the defined challenges addressing person detection and tracking in fragmented occlusion scenarios, and quantitative and qualitative performance evaluation of challenge results submitted by six worldwide participants. The results show that while several detection and tracking methods achieve overall good results, through-foliage detection and tracking remains a challenging task for surveillance systems especially as it serves as the input to behaviour (threat) recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry-Based Person Re-Identification in Fisheye Stereo On the Performance of Crowd-Specific Detectors in Multi-Pedestrian Tracking ARPD: Anchor-free Rotation-aware People Detection using Topview Fisheye Camera A Fire Detection Model Based on Tiny-YOLOv3 with Hyperparameters Improvement A Splittable DNN-Based Object Detector for Edge-Cloud Collaborative Real-Time Video Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1