基于LS-SVM的软测量及其在精馏塔上的应用

Yafen Li, Qi Li, Huijuan Wang, Ning‐Tao Ma
{"title":"基于LS-SVM的软测量及其在精馏塔上的应用","authors":"Yafen Li, Qi Li, Huijuan Wang, Ning‐Tao Ma","doi":"10.1109/ISDA.2006.246","DOIUrl":null,"url":null,"abstract":"Dry point of aviation kerosene in the atmospheric distillation column is a very important process value for quality controlling. But unfortunately few on-line hardware sensors are available to this value or such sensors are difficult to maintain. This paper adopts a novel method based on least squares support vector machine (LS-SVM) regression to implement on-line estimation of aviation kerosene dry point. Compared to traditional radial basis function (RBF) neural network and squares support vector machine (SVM) regression methods, using the same sample data, the simulation results show that the soft sensing based on LS-SVM regression has better abilities of model generalization and real-time character","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Soft Sensing Based on LS-SVM and Its Application to a Distillation Column\",\"authors\":\"Yafen Li, Qi Li, Huijuan Wang, Ning‐Tao Ma\",\"doi\":\"10.1109/ISDA.2006.246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dry point of aviation kerosene in the atmospheric distillation column is a very important process value for quality controlling. But unfortunately few on-line hardware sensors are available to this value or such sensors are difficult to maintain. This paper adopts a novel method based on least squares support vector machine (LS-SVM) regression to implement on-line estimation of aviation kerosene dry point. Compared to traditional radial basis function (RBF) neural network and squares support vector machine (SVM) regression methods, using the same sample data, the simulation results show that the soft sensing based on LS-SVM regression has better abilities of model generalization and real-time character\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

航空煤油常压精馏塔干点是一个非常重要的质量控制过程值。但不幸的是,很少有在线硬件传感器可用于此值或此类传感器难以维护。采用一种基于最小二乘支持向量机(LS-SVM)回归的新方法实现航空煤油干点的在线估计。与传统的径向基函数(RBF)神经网络和平方支持向量机(SVM)回归方法相比,在相同的样本数据下,仿真结果表明基于LS-SVM回归的软测量具有更好的模型泛化能力和实时性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft Sensing Based on LS-SVM and Its Application to a Distillation Column
Dry point of aviation kerosene in the atmospheric distillation column is a very important process value for quality controlling. But unfortunately few on-line hardware sensors are available to this value or such sensors are difficult to maintain. This paper adopts a novel method based on least squares support vector machine (LS-SVM) regression to implement on-line estimation of aviation kerosene dry point. Compared to traditional radial basis function (RBF) neural network and squares support vector machine (SVM) regression methods, using the same sample data, the simulation results show that the soft sensing based on LS-SVM regression has better abilities of model generalization and real-time character
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1