基于mini - exception神经网络的面部表情识别轻量级卷积神经网络

Changjian Li, Dongcheng Li, Man Zhao, Hui Li
{"title":"基于mini - exception神经网络的面部表情识别轻量级卷积神经网络","authors":"Changjian Li, Dongcheng Li, Man Zhao, Hui Li","doi":"10.1109/QRS-C57518.2022.00104","DOIUrl":null,"url":null,"abstract":"This paper builds a convolutional neural network model based on Xception; we delete the fully connected layer in the traditional convolutional neural network model and use four depthwise separable convolutions to replace the convolution layer in convolutional neural network; we use batch normalization to process the output data after each convolution operation, and use the ReLU activation function to add nonlinear factors to the output data, and finally use the SoftMax function for final result classification. Our model achieved an accuracy rate of 73% on the FER2013 dataset, which is a particular improvement compared to the original model Xception. We design and implement a facial recognition system that can be used for static images and real-time recognition, which can quickly and accurately recognize authentic facial expressions.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Light-Weight Convolutional Neural Network for Facial Expression Recognition using Mini-Xception Neural Networks\",\"authors\":\"Changjian Li, Dongcheng Li, Man Zhao, Hui Li\",\"doi\":\"10.1109/QRS-C57518.2022.00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper builds a convolutional neural network model based on Xception; we delete the fully connected layer in the traditional convolutional neural network model and use four depthwise separable convolutions to replace the convolution layer in convolutional neural network; we use batch normalization to process the output data after each convolution operation, and use the ReLU activation function to add nonlinear factors to the output data, and finally use the SoftMax function for final result classification. Our model achieved an accuracy rate of 73% on the FER2013 dataset, which is a particular improvement compared to the original model Xception. We design and implement a facial recognition system that can be used for static images and real-time recognition, which can quickly and accurately recognize authentic facial expressions.\",\"PeriodicalId\":183728,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C57518.2022.00104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一个基于exception的卷积神经网络模型;我们删除了传统卷积神经网络模型中的全连通层,用四个深度可分离的卷积来代替卷积神经网络中的卷积层;我们在每次卷积操作后使用批处理归一化处理输出数据,并使用ReLU激活函数对输出数据添加非线性因子,最后使用SoftMax函数对最终结果进行分类。我们的模型在FER2013数据集上实现了73%的准确率,与原始模型exception相比,这是一个特别的改进。我们设计并实现了一种可以用于静态图像和实时识别的面部识别系统,可以快速准确地识别真实的面部表情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Light-Weight Convolutional Neural Network for Facial Expression Recognition using Mini-Xception Neural Networks
This paper builds a convolutional neural network model based on Xception; we delete the fully connected layer in the traditional convolutional neural network model and use four depthwise separable convolutions to replace the convolution layer in convolutional neural network; we use batch normalization to process the output data after each convolution operation, and use the ReLU activation function to add nonlinear factors to the output data, and finally use the SoftMax function for final result classification. Our model achieved an accuracy rate of 73% on the FER2013 dataset, which is a particular improvement compared to the original model Xception. We design and implement a facial recognition system that can be used for static images and real-time recognition, which can quickly and accurately recognize authentic facial expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Bug Prediction based on Complex Network Considering Control Flow A Fault Localization Method Based on Similarity Weighting with Unlabeled Test Cases What Should Abeeha do? an Activity for Phishing Awareness The Real-Time General Display and Control Platform Designing Method based on Software Product Line Code Search Method Based on Multimodal Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1