健康物联网中的隐私、风险、匿名化和数据共享

Liane Colonna
{"title":"健康物联网中的隐私、风险、匿名化和数据共享","authors":"Liane Colonna","doi":"10.5195/tlp.2020.235","DOIUrl":null,"url":null,"abstract":"This paper explores a specific risk-mitigation strategy to reduce privacy concerns in the Internet of Health Things (IoHT): data anonymization. It contributes to the current academic debate surrounding the role of anonymization in the IoHT by evaluating how data controllers can balance privacy risks against the quality of output data and select the appropriate privacy model that achieves the aims underlying the concept of Privacy by Design. It sets forth several approaches for identifying the risk of re-identification in the IoHT as well as explores the potential for synthetic data generation to be used as an alternative method to anonymization for data sharing.","PeriodicalId":185385,"journal":{"name":"Pittsburgh Journal of Technology Law & Policy","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Privacy, Risk, Anonymization and Data Sharing in the Internet of Health Things\",\"authors\":\"Liane Colonna\",\"doi\":\"10.5195/tlp.2020.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a specific risk-mitigation strategy to reduce privacy concerns in the Internet of Health Things (IoHT): data anonymization. It contributes to the current academic debate surrounding the role of anonymization in the IoHT by evaluating how data controllers can balance privacy risks against the quality of output data and select the appropriate privacy model that achieves the aims underlying the concept of Privacy by Design. It sets forth several approaches for identifying the risk of re-identification in the IoHT as well as explores the potential for synthetic data generation to be used as an alternative method to anonymization for data sharing.\",\"PeriodicalId\":185385,\"journal\":{\"name\":\"Pittsburgh Journal of Technology Law & Policy\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pittsburgh Journal of Technology Law & Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5195/tlp.2020.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pittsburgh Journal of Technology Law & Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5195/tlp.2020.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文探讨了一种特定的风险缓解策略,以减少健康物联网(IoHT)中的隐私问题:数据匿名化。它通过评估数据控制器如何平衡隐私风险与输出数据质量,并选择适当的隐私模型来实现隐私设计概念的目标,从而为当前围绕匿名化在IoHT中的作用的学术辩论做出了贡献。它提出了识别IoHT中重新识别风险的几种方法,并探讨了合成数据生成的潜力,可作为数据共享匿名化的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy, Risk, Anonymization and Data Sharing in the Internet of Health Things
This paper explores a specific risk-mitigation strategy to reduce privacy concerns in the Internet of Health Things (IoHT): data anonymization. It contributes to the current academic debate surrounding the role of anonymization in the IoHT by evaluating how data controllers can balance privacy risks against the quality of output data and select the appropriate privacy model that achieves the aims underlying the concept of Privacy by Design. It sets forth several approaches for identifying the risk of re-identification in the IoHT as well as explores the potential for synthetic data generation to be used as an alternative method to anonymization for data sharing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
For Profit or For Health? It is Time to Reckon With the Current Pharmaceutical Landscape Through a Systematic Analysis of Monoclonal Anitbodies The Use of Race in Medical Artificial Intelligence Me-FAS, You-FAS, We All Eat PFAS: What To Do About the Forever Chemical Patent Eligibility: Exploring the Intersection Between Patent Law and Biomedical Data Biometric Monitoring Devices: Modern Solutions to Protecting Athletes’ Data Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1