{"title":"基于覆盖率的攻击配置文件","authors":"A. Rivers, M. Vouk, L. Williams","doi":"10.1109/SERE-C.2014.15","DOIUrl":null,"url":null,"abstract":"Automated cyber attacks tend to be schedule and resource limited. The primary progress metric is often \"coverage\" of pre-determined \"known\" vulnerabilities that may not have been patched, along with possible zero-day exploits (if such exist). We present and discuss a hypergeometric process model that describes such attack patterns. We used web request signatures from the logs of a production web server to assess the applicability of the model.","PeriodicalId":373062,"journal":{"name":"2014 IEEE Eighth International Conference on Software Security and Reliability-Companion","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Coverage-Based Attack Profiles\",\"authors\":\"A. Rivers, M. Vouk, L. Williams\",\"doi\":\"10.1109/SERE-C.2014.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated cyber attacks tend to be schedule and resource limited. The primary progress metric is often \\\"coverage\\\" of pre-determined \\\"known\\\" vulnerabilities that may not have been patched, along with possible zero-day exploits (if such exist). We present and discuss a hypergeometric process model that describes such attack patterns. We used web request signatures from the logs of a production web server to assess the applicability of the model.\",\"PeriodicalId\":373062,\"journal\":{\"name\":\"2014 IEEE Eighth International Conference on Software Security and Reliability-Companion\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Eighth International Conference on Software Security and Reliability-Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERE-C.2014.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Software Security and Reliability-Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE-C.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated cyber attacks tend to be schedule and resource limited. The primary progress metric is often "coverage" of pre-determined "known" vulnerabilities that may not have been patched, along with possible zero-day exploits (if such exist). We present and discuss a hypergeometric process model that describes such attack patterns. We used web request signatures from the logs of a production web server to assess the applicability of the model.