基于自适应FSA的决策树归纳

H. Pistori, J. J. Neto
{"title":"基于自适应FSA的决策树归纳","authors":"H. Pistori, J. J. Neto","doi":"10.19153/cleiej.6.1.4","DOIUrl":null,"url":null,"abstract":"\n \n \nThis paper introduces a new algorithm for the induction of decision trees, based on adaptive techniques. One of the main feature of this algorithm is the application of automata theory to formalize the problem of decision tree induction and the use of a hybrid approach, which integrates both syntactical and statistical strategies. Some experimental results are also pre- sented indicating that the adaptive approach is useful in the construction of efficient learning algorithms. \n \n \n","PeriodicalId":418941,"journal":{"name":"CLEI Electron. J.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Decision Tree Induction using Adaptive FSA\",\"authors\":\"H. Pistori, J. J. Neto\",\"doi\":\"10.19153/cleiej.6.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nThis paper introduces a new algorithm for the induction of decision trees, based on adaptive techniques. One of the main feature of this algorithm is the application of automata theory to formalize the problem of decision tree induction and the use of a hybrid approach, which integrates both syntactical and statistical strategies. Some experimental results are also pre- sented indicating that the adaptive approach is useful in the construction of efficient learning algorithms. \\n \\n \\n\",\"PeriodicalId\":418941,\"journal\":{\"name\":\"CLEI Electron. J.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CLEI Electron. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19153/cleiej.6.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEI Electron. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19153/cleiej.6.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了一种基于自适应技术的决策树归纳新算法。该算法的一个主要特点是将自动机理论应用于决策树归纳问题的形式化,并使用了一种混合方法,该方法将语法策略和统计策略相结合。一些实验结果也表明,自适应方法在构建高效的学习算法方面是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decision Tree Induction using Adaptive FSA
This paper introduces a new algorithm for the induction of decision trees, based on adaptive techniques. One of the main feature of this algorithm is the application of automata theory to formalize the problem of decision tree induction and the use of a hybrid approach, which integrates both syntactical and statistical strategies. Some experimental results are also pre- sented indicating that the adaptive approach is useful in the construction of efficient learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cluster-based LSTM models to improve Dengue cases forecast Medium Access Control Techniques for Massive Machine-Type Communications in Cellular IoT Networks 2D Simplified Wildfire Spreading Model in Python: From NumPy to CuPy Preface to the CLTM-CLTD 2022 Special Issue On the specification and verification of the PCR parallel programming pattern in TLA+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1