基于支持向量机残差Kriging的区域地磁图构建

Tong Liu, Xingyu Li, M. Fu, Zhaoxiang Liang
{"title":"基于支持向量机残差Kriging的区域地磁图构建","authors":"Tong Liu, Xingyu Li, M. Fu, Zhaoxiang Liang","doi":"10.23919/CCC50068.2020.9188420","DOIUrl":null,"url":null,"abstract":"Regional geomagnetic maps are widely used in geomagnetic navigation and magnetic anomaly detection. However, the complexity of geomagnetic spatial trend changes and the spatial sparseness of the geomagnetic data affect the accuracy of regional geomagnetic map construction. In order to improve the accuracy of regional geomagnetic maps, this paper proposes the Support Vector Machine Residual Kriging method (SVMRKriging). First, Support Vector Machine (SVM) is used to fit the geomagnetic trend changes, then the residual component is interpolated by ordinary Kriging, and finally these two parts are added to construct a regional geomagnetic map. Experiments were performed using geomagnetic grid data and aeromagnetic data. The experiment results show that SVMRKriging method can improve the accuracy of regional geomagnetic maps with geomagnetic trend changes.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regional Geomagnetic Map Construction based on Support Vector Machine Residual Kriging\",\"authors\":\"Tong Liu, Xingyu Li, M. Fu, Zhaoxiang Liang\",\"doi\":\"10.23919/CCC50068.2020.9188420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regional geomagnetic maps are widely used in geomagnetic navigation and magnetic anomaly detection. However, the complexity of geomagnetic spatial trend changes and the spatial sparseness of the geomagnetic data affect the accuracy of regional geomagnetic map construction. In order to improve the accuracy of regional geomagnetic maps, this paper proposes the Support Vector Machine Residual Kriging method (SVMRKriging). First, Support Vector Machine (SVM) is used to fit the geomagnetic trend changes, then the residual component is interpolated by ordinary Kriging, and finally these two parts are added to construct a regional geomagnetic map. Experiments were performed using geomagnetic grid data and aeromagnetic data. The experiment results show that SVMRKriging method can improve the accuracy of regional geomagnetic maps with geomagnetic trend changes.\",\"PeriodicalId\":255872,\"journal\":{\"name\":\"2020 39th Chinese Control Conference (CCC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CCC50068.2020.9188420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

区域地磁图在地磁导航和磁异常探测中有着广泛的应用。然而,地磁空间趋势变化的复杂性和地磁数据的空间稀疏性影响了区域地磁图构建的精度。为了提高区域地磁图的精度,提出了支持向量机残差克里格方法(SVMRKriging)。首先利用支持向量机(SVM)对地磁趋势变化进行拟合,然后利用普通克里格插值法对残差分量进行插值,最后将残差分量与支持向量机的残差分量相加,构建区域地磁图。利用地磁网格数据和航磁数据进行了实验。实验结果表明,SVMRKriging方法可以提高地磁趋势变化区域地磁图的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regional Geomagnetic Map Construction based on Support Vector Machine Residual Kriging
Regional geomagnetic maps are widely used in geomagnetic navigation and magnetic anomaly detection. However, the complexity of geomagnetic spatial trend changes and the spatial sparseness of the geomagnetic data affect the accuracy of regional geomagnetic map construction. In order to improve the accuracy of regional geomagnetic maps, this paper proposes the Support Vector Machine Residual Kriging method (SVMRKriging). First, Support Vector Machine (SVM) is used to fit the geomagnetic trend changes, then the residual component is interpolated by ordinary Kriging, and finally these two parts are added to construct a regional geomagnetic map. Experiments were performed using geomagnetic grid data and aeromagnetic data. The experiment results show that SVMRKriging method can improve the accuracy of regional geomagnetic maps with geomagnetic trend changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1