低级真核生物核糖体生物发生的生长规律和不变性

S. Kostinski, S. Reuveni
{"title":"低级真核生物核糖体生物发生的生长规律和不变性","authors":"S. Kostinski, S. Reuveni","doi":"10.1103/PHYSREVRESEARCH.3.013020","DOIUrl":null,"url":null,"abstract":"Eukarya and Bacteria are the most evolutionarily distant domains of life, which is reflected by differences in their cellular structure and physiology. For example, Eukarya feature membrane-bound organelles such as nuclei and mitochondria, whereas Bacteria have none. The greater complexity of Eukarya renders them difficult to study from both an experimental and theoretical perspective. However, encouraged by a recent experimental result showing that budding yeast (a unicellular eukaryote) obeys the same proportionality between ribosomal proteome fractions and cellular growth rates as Bacteria, we derive a set of relations describing eukaryotic growth from first principles of ribosome biogenesis. We recover the observed ribosomal protein proportionality, and then continue to obtain two growth-laws for the number of RNA polymerases synthesizing ribosomal RNA per ribosome in the cell. These growth-laws, in turn, reveal two invariants of eukaryotic growth, i.e. quantities predicted to be conserved by Eukarya regardless of growth conditions. The invariants, which are the first of their kind for Eukarya, clarify the coordination of transcription and translation kinetics as required by ribosome biogenesis, and link these kinetic parameters to cellular physiology. We demonstrate application of the relations to the yeast S. cerevisiae and find the predictions to be in good agreement with currently available data. We then outline methods to quantitatively deduce several unknown kinetic and physiological parameters. The analysis is not specific to S. cerevisiae and can be extended to other lower (unicellular) Eukarya when data become available. The relations may also have relevance to certain cancer cells which, like bacteria and yeast, exhibit rapid cell proliferation and ribosome biogenesis.","PeriodicalId":360136,"journal":{"name":"arXiv: Biological Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Growth laws and invariants from ribosome biogenesis in lower Eukarya\",\"authors\":\"S. Kostinski, S. Reuveni\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.013020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eukarya and Bacteria are the most evolutionarily distant domains of life, which is reflected by differences in their cellular structure and physiology. For example, Eukarya feature membrane-bound organelles such as nuclei and mitochondria, whereas Bacteria have none. The greater complexity of Eukarya renders them difficult to study from both an experimental and theoretical perspective. However, encouraged by a recent experimental result showing that budding yeast (a unicellular eukaryote) obeys the same proportionality between ribosomal proteome fractions and cellular growth rates as Bacteria, we derive a set of relations describing eukaryotic growth from first principles of ribosome biogenesis. We recover the observed ribosomal protein proportionality, and then continue to obtain two growth-laws for the number of RNA polymerases synthesizing ribosomal RNA per ribosome in the cell. These growth-laws, in turn, reveal two invariants of eukaryotic growth, i.e. quantities predicted to be conserved by Eukarya regardless of growth conditions. The invariants, which are the first of their kind for Eukarya, clarify the coordination of transcription and translation kinetics as required by ribosome biogenesis, and link these kinetic parameters to cellular physiology. We demonstrate application of the relations to the yeast S. cerevisiae and find the predictions to be in good agreement with currently available data. We then outline methods to quantitatively deduce several unknown kinetic and physiological parameters. The analysis is not specific to S. cerevisiae and can be extended to other lower (unicellular) Eukarya when data become available. The relations may also have relevance to certain cancer cells which, like bacteria and yeast, exhibit rapid cell proliferation and ribosome biogenesis.\",\"PeriodicalId\":360136,\"journal\":{\"name\":\"arXiv: Biological Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.013020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

真核生物和细菌是进化上最遥远的生命领域,这反映在它们的细胞结构和生理上的差异。例如,真核生物以细胞核和线粒体等膜结合细胞器为特征,而细菌则没有。真核生物的更大复杂性使得它们很难从实验和理论的角度进行研究。然而,最近的一项实验结果表明,出芽酵母(一种单细胞真核生物)与细菌一样,在核糖体蛋白质组分数和细胞生长速率之间遵循相同的比例关系,我们从核糖体生物发生的基本原理中推导出一组描述真核生物生长的关系。我们恢复了观察到的核糖体蛋白比例,然后继续得到细胞中每个核糖体合成核糖体RNA的RNA聚合酶数量的两条增长规律。这些生长规律反过来揭示了真核生物生长的两个不变量,即无论生长条件如何,真核生物预测的守恒量。这是真核生物首次发现的不变量,阐明了核糖体生物发生所需的转录和翻译动力学的协调,并将这些动力学参数与细胞生理学联系起来。我们展示了对酿酒酵母的关系的应用,并发现预测与目前可用的数据很好地一致。然后,我们概述了定量推断几个未知的动力学和生理参数的方法。该分析并非针对酿酒葡萄球菌,当数据可用时,可以扩展到其他低等(单细胞)真核生物。这种关系也可能与某些癌细胞有关,如细菌和酵母,表现出快速的细胞增殖和核糖体生物发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth laws and invariants from ribosome biogenesis in lower Eukarya
Eukarya and Bacteria are the most evolutionarily distant domains of life, which is reflected by differences in their cellular structure and physiology. For example, Eukarya feature membrane-bound organelles such as nuclei and mitochondria, whereas Bacteria have none. The greater complexity of Eukarya renders them difficult to study from both an experimental and theoretical perspective. However, encouraged by a recent experimental result showing that budding yeast (a unicellular eukaryote) obeys the same proportionality between ribosomal proteome fractions and cellular growth rates as Bacteria, we derive a set of relations describing eukaryotic growth from first principles of ribosome biogenesis. We recover the observed ribosomal protein proportionality, and then continue to obtain two growth-laws for the number of RNA polymerases synthesizing ribosomal RNA per ribosome in the cell. These growth-laws, in turn, reveal two invariants of eukaryotic growth, i.e. quantities predicted to be conserved by Eukarya regardless of growth conditions. The invariants, which are the first of their kind for Eukarya, clarify the coordination of transcription and translation kinetics as required by ribosome biogenesis, and link these kinetic parameters to cellular physiology. We demonstrate application of the relations to the yeast S. cerevisiae and find the predictions to be in good agreement with currently available data. We then outline methods to quantitatively deduce several unknown kinetic and physiological parameters. The analysis is not specific to S. cerevisiae and can be extended to other lower (unicellular) Eukarya when data become available. The relations may also have relevance to certain cancer cells which, like bacteria and yeast, exhibit rapid cell proliferation and ribosome biogenesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repurposing the Combination Drug of Favipiravir, Hydroxychloroquine and Oseltamivir as a Potential Inhibitor Against SARS-CoV-2: A Computational Study Cellular Fourier analysis for geometrically disordered materials Biological effects of low power nonionizing radiation: A narrative review Growth laws and invariants from ribosome biogenesis in lower Eukarya Erythrocyte-erythrocyte aggregation dynamics under shear flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1