基于主动外观模型和卷积神经网络的自动面相系统

D. Sudiana, M. Rizkinia, Ilham Mulya Rafid
{"title":"基于主动外观模型和卷积神经网络的自动面相系统","authors":"D. Sudiana, M. Rizkinia, Ilham Mulya Rafid","doi":"10.1109/QIR54354.2021.9716162","DOIUrl":null,"url":null,"abstract":"This research discusses the design and development of an automatic physiognomy system to determine a person’s tendencies based on the features of its face. Physiognomy itself is a method of predicting a person’s characteristics based on their facial features. Each facial feature has its uniqueness and characteristics, such as variations in distance, overall shape, and size. The facial image as input data is processed in every system step. Finally, the system displays the personality of that person. Simulations show that each algorithm can perform its respective functions well. The simulation results show that the combination of extracting facial features using the Active Appearance Model and Convolutional Neural Network for solving classification problems produces a very good number of personality traits predictions with each model accuracy value between 0.8 to 1, or 0.8797 on average. In addition, the model made proved to produce a good performance for the classification process with a true positive rate between 0.8834 to 1, or 0.9417 on average. This method can also detect many personality traits, with 28 personality traits that can be detected.","PeriodicalId":446396,"journal":{"name":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Physiognomy System using Active Appearance Model and Convolutional Neural Network\",\"authors\":\"D. Sudiana, M. Rizkinia, Ilham Mulya Rafid\",\"doi\":\"10.1109/QIR54354.2021.9716162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research discusses the design and development of an automatic physiognomy system to determine a person’s tendencies based on the features of its face. Physiognomy itself is a method of predicting a person’s characteristics based on their facial features. Each facial feature has its uniqueness and characteristics, such as variations in distance, overall shape, and size. The facial image as input data is processed in every system step. Finally, the system displays the personality of that person. Simulations show that each algorithm can perform its respective functions well. The simulation results show that the combination of extracting facial features using the Active Appearance Model and Convolutional Neural Network for solving classification problems produces a very good number of personality traits predictions with each model accuracy value between 0.8 to 1, or 0.8797 on average. In addition, the model made proved to produce a good performance for the classification process with a true positive rate between 0.8834 to 1, or 0.9417 on average. This method can also detect many personality traits, with 28 personality traits that can be detected.\",\"PeriodicalId\":446396,\"journal\":{\"name\":\"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QIR54354.2021.9716162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QIR54354.2021.9716162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究讨论了一个自动面相系统的设计和开发,以确定一个人的倾向基于其面部特征。面相学本身是一种根据面部特征预测一个人特征的方法。每个面部特征都有其独特性和特征,例如距离、整体形状和大小的变化。面部图像作为输入数据在系统的每个步骤中进行处理。最后,系统显示该人的个性。仿真结果表明,每种算法都能很好地完成各自的功能。仿真结果表明,将主动外观模型与卷积神经网络相结合进行人脸特征提取,求解分类问题,得到了非常好的人格特征预测结果,每个模型的准确率在0.8 ~ 1之间,平均准确率为0.8797。此外,所建立的模型对分类过程具有良好的性能,其真阳性率在0.8834 ~ 1之间,平均为0.9417。这种方法还可以检测到许多性格特征,可以检测到28种性格特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Physiognomy System using Active Appearance Model and Convolutional Neural Network
This research discusses the design and development of an automatic physiognomy system to determine a person’s tendencies based on the features of its face. Physiognomy itself is a method of predicting a person’s characteristics based on their facial features. Each facial feature has its uniqueness and characteristics, such as variations in distance, overall shape, and size. The facial image as input data is processed in every system step. Finally, the system displays the personality of that person. Simulations show that each algorithm can perform its respective functions well. The simulation results show that the combination of extracting facial features using the Active Appearance Model and Convolutional Neural Network for solving classification problems produces a very good number of personality traits predictions with each model accuracy value between 0.8 to 1, or 0.8797 on average. In addition, the model made proved to produce a good performance for the classification process with a true positive rate between 0.8834 to 1, or 0.9417 on average. This method can also detect many personality traits, with 28 personality traits that can be detected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conference Schedule Automatic Essay Grading System for Japanese Language Exam using CNN-LSTM Design of Cross and Square Slot with Beamforming for Microstrip Reflectarray Antenna at 28 GHz Performance Analysis of YOLOv4 and SSD Mobilenet V2 for Foreign Object Debris (FOD) Detection at Airport Runway Using Custom Dataset Development of Greedy Power Allocation Round Robin Scheduling for 5.5G Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1