Yasha Iravantchi, Yi Zhao, Kenrick Kin, Alanson P. Sample
{"title":"SAWSense:利用表面声波进行表面事件识别","authors":"Yasha Iravantchi, Yi Zhao, Kenrick Kin, Alanson P. Sample","doi":"10.1145/3544548.3580991","DOIUrl":null,"url":null,"abstract":"Enabling computing systems to understand user interactions with everyday surfaces and objects can drive a wide range of applications. However, existing vibration-based sensors (e.g., accelerometers) lack the sensitivity to detect light touch gestures or the bandwidth to recognize activity containing high-frequency components. Conversely, microphones are highly susceptible to environmental noise, degrading performance. Each time an object impacts a surface, Surface Acoustic Waves (SAWs) are generated that propagate along the air-to-surface boundary. This work repurposes a Voice PickUp Unit (VPU) to capture SAWs on surfaces (including smooth surfaces, odd geometries, and fabrics) over long distances and in noisy environments. Our custom-designed signal acquisition, processing, and machine learning pipeline demonstrates utility in both interactive and activity recognition applications, such as classifying trackpad-style gestures on a desk and recognizing 16 cooking-related activities, all with >97% accuracy. Ultimately, SAWs offer a unique signal that can enable robust recognition of user touch and on-surface events.","PeriodicalId":314098,"journal":{"name":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","volume":"7 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAWSense: Using Surface Acoustic Waves for Surface-bound Event Recognition\",\"authors\":\"Yasha Iravantchi, Yi Zhao, Kenrick Kin, Alanson P. Sample\",\"doi\":\"10.1145/3544548.3580991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enabling computing systems to understand user interactions with everyday surfaces and objects can drive a wide range of applications. However, existing vibration-based sensors (e.g., accelerometers) lack the sensitivity to detect light touch gestures or the bandwidth to recognize activity containing high-frequency components. Conversely, microphones are highly susceptible to environmental noise, degrading performance. Each time an object impacts a surface, Surface Acoustic Waves (SAWs) are generated that propagate along the air-to-surface boundary. This work repurposes a Voice PickUp Unit (VPU) to capture SAWs on surfaces (including smooth surfaces, odd geometries, and fabrics) over long distances and in noisy environments. Our custom-designed signal acquisition, processing, and machine learning pipeline demonstrates utility in both interactive and activity recognition applications, such as classifying trackpad-style gestures on a desk and recognizing 16 cooking-related activities, all with >97% accuracy. Ultimately, SAWs offer a unique signal that can enable robust recognition of user touch and on-surface events.\",\"PeriodicalId\":314098,\"journal\":{\"name\":\"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"7 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544548.3580991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544548.3580991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SAWSense: Using Surface Acoustic Waves for Surface-bound Event Recognition
Enabling computing systems to understand user interactions with everyday surfaces and objects can drive a wide range of applications. However, existing vibration-based sensors (e.g., accelerometers) lack the sensitivity to detect light touch gestures or the bandwidth to recognize activity containing high-frequency components. Conversely, microphones are highly susceptible to environmental noise, degrading performance. Each time an object impacts a surface, Surface Acoustic Waves (SAWs) are generated that propagate along the air-to-surface boundary. This work repurposes a Voice PickUp Unit (VPU) to capture SAWs on surfaces (including smooth surfaces, odd geometries, and fabrics) over long distances and in noisy environments. Our custom-designed signal acquisition, processing, and machine learning pipeline demonstrates utility in both interactive and activity recognition applications, such as classifying trackpad-style gestures on a desk and recognizing 16 cooking-related activities, all with >97% accuracy. Ultimately, SAWs offer a unique signal that can enable robust recognition of user touch and on-surface events.