预测学生在混合式学习环境中的成功

S. V. Goidsenhoven, D. Bogdanova, Galina Deeva, S. V. Broucke, Jochen De Weerdt, M. Snoeck
{"title":"预测学生在混合式学习环境中的成功","authors":"S. V. Goidsenhoven, D. Bogdanova, Galina Deeva, S. V. Broucke, Jochen De Weerdt, M. Snoeck","doi":"10.1145/3375462.3375494","DOIUrl":null,"url":null,"abstract":"Blended learning is gaining ground in contemporary education. However, studies on predictive learning analytics in the context of blended learning remain relatively scarce compared to Massive Open Online Courses (MOOCs), where such applications have gained a strong foothold. Data sets obtained from blended learning environments suffer from a high dimensionality and typically expose a limited number of instances, which makes predictive analysis a challenging task. In this work, we explore the log data of a master-level blended course to predict the students' grades based entirely on the data obtained from an online module (a small private online course), using and comparing logistic regression and random forest-based predictive models. The results of the analysis show that, despite the limited data, success vs. fail predictions can be made as early as in the middle of the course. This could be used in the future for timely interventions, both for failure prevention as well as for reinforcing positive learning behaviours of students.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Predicting student success in a blended learning environment\",\"authors\":\"S. V. Goidsenhoven, D. Bogdanova, Galina Deeva, S. V. Broucke, Jochen De Weerdt, M. Snoeck\",\"doi\":\"10.1145/3375462.3375494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blended learning is gaining ground in contemporary education. However, studies on predictive learning analytics in the context of blended learning remain relatively scarce compared to Massive Open Online Courses (MOOCs), where such applications have gained a strong foothold. Data sets obtained from blended learning environments suffer from a high dimensionality and typically expose a limited number of instances, which makes predictive analysis a challenging task. In this work, we explore the log data of a master-level blended course to predict the students' grades based entirely on the data obtained from an online module (a small private online course), using and comparing logistic regression and random forest-based predictive models. The results of the analysis show that, despite the limited data, success vs. fail predictions can be made as early as in the middle of the course. This could be used in the future for timely interventions, both for failure prevention as well as for reinforcing positive learning behaviours of students.\",\"PeriodicalId\":355800,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375462.3375494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

混合式学习在当代教育中越来越受欢迎。然而,与大规模在线开放课程(MOOCs)相比,混合学习背景下的预测学习分析研究仍然相对较少,而这种应用已经在mooc中站稳了脚跟。从混合学习环境中获得的数据集具有高维性,并且通常暴露有限数量的实例,这使得预测分析成为一项具有挑战性的任务。在这项工作中,我们探索了一个硕士级混合课程的日志数据,完全基于从在线模块(一个小型私人在线课程)获得的数据来预测学生的成绩,使用并比较了逻辑回归和基于随机森林的预测模型。分析结果表明,尽管数据有限,但早在课程中途就可以做出成功与失败的预测。这可以在未来用于及时干预,既可以预防失败,也可以加强学生的积极学习行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting student success in a blended learning environment
Blended learning is gaining ground in contemporary education. However, studies on predictive learning analytics in the context of blended learning remain relatively scarce compared to Massive Open Online Courses (MOOCs), where such applications have gained a strong foothold. Data sets obtained from blended learning environments suffer from a high dimensionality and typically expose a limited number of instances, which makes predictive analysis a challenging task. In this work, we explore the log data of a master-level blended course to predict the students' grades based entirely on the data obtained from an online module (a small private online course), using and comparing logistic regression and random forest-based predictive models. The results of the analysis show that, despite the limited data, success vs. fail predictions can be made as early as in the middle of the course. This could be used in the future for timely interventions, both for failure prevention as well as for reinforcing positive learning behaviours of students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How working memory capacity limits success in self-directed learning: a cognitive model of search and concept formation Quantifying data sensitivity: precise demonstration of care when building student prediction models Towards automated analysis of cognitive presence in MOOC discussions: a manual classification study Towards automatic cross-language classification of cognitive presence in online discussions What college students say, and what they do: aligning self-regulated learning theory with behavioral logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1