Yuta Kataoka, Hao Yang, Shalini Keshavamurthy, Ippei Nishitani, K. Oguchi
{"title":"基于深度强化学习的多车道高速公路车辆控制交通影响分析","authors":"Yuta Kataoka, Hao Yang, Shalini Keshavamurthy, Ippei Nishitani, K. Oguchi","doi":"10.1109/ITSC45102.2020.9294244","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is one of the methods that has been used to realize optimal driving. Most studies have focused on evaluating learning performance of a fraction of vehicles controlled by reinforcement learning. It is unclear how these controlled vehicles influence other vehicles. We conducted several experiments examining the impact of multiple vehicles controlled by reinforcement learning on traffic flow. The simulations were performed on a three-lane freeway with lane regulation at the end of one of the lanes. The controlled vehicles were trained to drive as fast as possible and run non-cooperatively. We found out that controlled vehicles could run faster than human-driven vehicles. Moreover, we anticipated that if multiple vehicles were run selfishly, it would adversely affect traffic flow. Contrary to expectations, the experimental results showed that even if numerous controlled vehicles drive selfishly, the negative impact on overall traffic would be small.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Impact Analysis of a Deep Reinforcement Learning-based Multi-lane Freeway Vehicle Control\",\"authors\":\"Yuta Kataoka, Hao Yang, Shalini Keshavamurthy, Ippei Nishitani, K. Oguchi\",\"doi\":\"10.1109/ITSC45102.2020.9294244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning is one of the methods that has been used to realize optimal driving. Most studies have focused on evaluating learning performance of a fraction of vehicles controlled by reinforcement learning. It is unclear how these controlled vehicles influence other vehicles. We conducted several experiments examining the impact of multiple vehicles controlled by reinforcement learning on traffic flow. The simulations were performed on a three-lane freeway with lane regulation at the end of one of the lanes. The controlled vehicles were trained to drive as fast as possible and run non-cooperatively. We found out that controlled vehicles could run faster than human-driven vehicles. Moreover, we anticipated that if multiple vehicles were run selfishly, it would adversely affect traffic flow. Contrary to expectations, the experimental results showed that even if numerous controlled vehicles drive selfishly, the negative impact on overall traffic would be small.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic Impact Analysis of a Deep Reinforcement Learning-based Multi-lane Freeway Vehicle Control
Reinforcement learning is one of the methods that has been used to realize optimal driving. Most studies have focused on evaluating learning performance of a fraction of vehicles controlled by reinforcement learning. It is unclear how these controlled vehicles influence other vehicles. We conducted several experiments examining the impact of multiple vehicles controlled by reinforcement learning on traffic flow. The simulations were performed on a three-lane freeway with lane regulation at the end of one of the lanes. The controlled vehicles were trained to drive as fast as possible and run non-cooperatively. We found out that controlled vehicles could run faster than human-driven vehicles. Moreover, we anticipated that if multiple vehicles were run selfishly, it would adversely affect traffic flow. Contrary to expectations, the experimental results showed that even if numerous controlled vehicles drive selfishly, the negative impact on overall traffic would be small.